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Discriminative AI is not enough
14.6. Generating images by inverting CNNs * 493

(a) (b) (c)

Figure 14.37: Illustration of DeepDream. The CNN is an Inception classifier trained on ImageNet. (a)
Starting image of an Aurelia aurita (also called moon jelly). (b) Image generated after 10 iterations. (c)
Image generated after 50 iterations. From https: // en. wikipedia. org/ wiki/ DeepDream . Used with kind
permission of Wikipedia author Martin Thoma.

of features in the image. Suppose we are interested in “amplifying” features from layers l 2 L.
We can do this by defining an energy or loss function of the form L(x) =

P
l2L

�
l
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�
l

=
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P
hwc

�
lhwc

(x) is the feature vector for layer l. We can now use gradient descent to
optimize this energy. The resulting process is called DeepDream [MOT15], since the model amplifies
features that were only hinted at in the original image and then creates images with more and more
of them.10

Figure 14.37 shows an example. We start with an image of a jellyfish, which we pass into a CNN
that was trained to classify ImageNet images. After several iterations, we generate some image which
is a hybrid of the input and the kinds of “hallucinations” we saw in Figure 14.33; these hallucinations
involve dog parts, since ImageNet has so many kinds of dogs in its label set. See [Tho16] for details,
and https://deepdreamgenerator.com for a fun web-based demo.

14.6.5 Neural style transfer

The DeepDream system in Figure 14.37 shows one way that CNNs can be used to create “art”.
However, it is rather creepy. In this section, we discuss a related approach that gives the user more
control. In particular, the user has to specify a reference “style image” xs and “content image” xc.
The system will then try to generate a new image x that “re-renders” xc in the style of xs. This is
called neural style transfer, and is illustrated in Figure 14.38 and Figure 14.39. This technique
was first proposed in [GEB16], and there are now many papers on this topic; see [Jin+17] for a recent
review.

14.6.5.1 How it works

Style transfer works by optimizing the following energy function:

L(x|xs, xc) = �TV LTV(x) + �cLcontent(x, xc) + �sLstyle(x, xs) (14.33)

See Figure 14.40 for a high level illustration.

10. The method was originally called Inceptionism, since it uses the inception CNN (Section 14.3.3).

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license

Deepdream: http://googleresearch.blogspot.ch/2015/06/inceptionism-going-deeper-into-neural.html
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Bayes rule

p(X |y) ∝ p(X)p(y |X)
posterior prior likelihood



Probability theory 101
Conditional probability

Joint probability

p(y |X)

p(X, y)

p(X, y) = p(y |X)p(X)

p(X) = ∑
y

p(X, y)

Product rule

Sum rule
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Mamixmum likelihood estimation Variational free energy

Statistical physicsGenerative modeling

“learn from data” “learn from energy”

F = 𝔼
X∼p(X)

[E(X) + kBT ln p(X)]

Two sides of the same coin

𝕂𝕃(data ∥ p) 𝕂𝕃(p ∥ e−E/kBT)

ℒ = − 𝔼X∼data [ln p(X)]

vs



2.D applications 47

Figure 2.D.1: Example application of a VAE in [Gómez-Bombarelli et al.,
2016]: design of new molecules with desired chemical properties. (a) A latent
continuous representation z of molecules is learned on a large dataset of
molecules. (b) This continuous representation enables gradient-based search
of new molecules that maximizes some chosen desired chemical property
given by objective function f (z).
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Figure 2.D.1: Example application of a VAE in [Gómez-Bombarelli et al.,
2016]: design of new molecules with desired chemical properties. (a) A latent
continuous representation z of molecules is learned on a large dataset of
molecules. (b) This continuous representation enables gradient-based search
of new molecules that maximizes some chosen desired chemical property
given by objective function f (z).

Boltzmann  
Machine

Nonequilibrium 
thermodynamics

Tensor networks 
Quantum circuits

Variational  
mean field

Monte Carlo 
Ising model

G 0
21~ ivn!5ivn1m2t2G~ ivn!. (23)

The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51

`

(
i1•••in

1
n!

h i1
•••h in

^Si1
•••Sin

&c
~o ! (27)

For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.

21A. Georges et al.: Dynamical mean-field theory of . . .

Rev. Mod. Phys., Vol. 68, No. 1, January 1996

 

Deep Unsupervised Learning using Nonequilibrium Thermodynamics
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Figure 1. The proposed modeling framework trained on 2-d swiss roll data. The top row shows time slices from the forward trajectory
q
⇣
x(0···T )

⌘
. The data distribution (left) undergoes Gaussian diffusion, which gradually transforms it into an identity-covariance Gaus-

sian (right). The middle row shows the corresponding time slices from the trained reverse trajectory p
⇣
x(0···T )

⌘
. An identity-covariance

Gaussian (right) undergoes a Gaussian diffusion process with learned mean and covariance functions, and is gradually transformed back
into the data distribution (left). The bottom row shows the drift term, fµ

⇣
x(t), t

⌘
� x(t), for the same reverse diffusion process.

nealed Importance Sampling (AIS) (Neal, 2001), which
uses a Markov chain which slowly converts one distribu-
tion into another to compute a ratio of normalizing con-
stants. In (Burda et al., 2014) it is shown that AIS can also
be performed using the reverse rather than forward trajec-
tory. Langevin dynamics (Langevin, 1908), which are the
stochastic realization of the Fokker-Planck equation, show
how to define a Gaussian diffusion process which has any
target distribution as its equilibrium. In (Suykens & Vande-
walle, 1995) the Fokker-Planck equation is used to perform
stochastic optimization. Finally, the Kolmogorov forward
and backward equations (Feller, 1949) show that for many
forward diffusion processes, the reverse diffusion processes
can be described using the same functional form.

2. Algorithm
Our goal is to define a forward (or inference) diffusion pro-
cess which converts any complex data distribution into a
simple, tractable, distribution, and then learn a finite-time
reversal of this diffusion process which defines our gener-
ative model distribution (See Figure 1). We first describe
the forward, inference diffusion process. We then show

how the reverse, generative diffusion process can be trained
and used to evaluate probabilities. We also derive entropy
bounds for the reverse process, and show how the learned
distributions can be multiplied by any second distribution
(e.g. as would be done to compute a posterior when in-
painting or denoising an image).

2.1. Forward Trajectory

We label the data distribution q
�
x(0)

�
. The data distribu-

tion is gradually converted into a well behaved (analyti-
cally tractable) distribution ⇡ (y) by repeated application
of a Markov diffusion kernel T⇡ (y|y0;�) for ⇡ (y), where
� is the diffusion rate,

⇡ (y) =

Z
dy0

T⇡ (y|y0;�)⇡ (y0) (1)

q

⇣
x(t)|x(t�1)

⌘
= T⇡

⇣
x(t)|x(t�1);�t

⌘
. (2)
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(a) Linear interpolation

Xt = tX1 + (1� t)X0

(b) Rectified flow Zt

induced by (X0, X1)

(c) Linear interpolation

Zt = tZ1 + (1� t)Z0

(d) Rectified flow Z0
t

induced by (Z0, Z1)

Figure 2: (a) Linear interpolation of data input (X0, X1) ⇠ ⇡0 ⇥ ⇡1. (b) The rectified flow Zt induced by (X0, X1);
the trajectories are “rewired” at the intersection points to avoid the crossing. (c) The linear interpolation of the end
points (Z0, Z1) of flow Zt. (d) The rectified flow induced from (Z0, Z1), which follows straight paths.

Empirically, rectified flow can yield high-quality results for image generation when simulated with a very
few number of Euler steps (see Figure 1, top row). Moreover, with just one step of reflow, the flow becomes
nearly straight and hence yield good results with a single Euler discretization step (Figure 1, the second
row). This substantially improves over the standard denoising diffusion methods. Quantitatively, we claim a
state-of-the-art result of FID (4.85) and recall (0.51) on CIFAR10 for one-step fast diffusion/flow models [5,
48, 91, 99, 47]. The same algorithm also achieves superb result on domain transfer tasks such as image-to-
image translation (see the bottom two rows of Figure 1) and transfer learning.

2 Method

We provide a quick overview of the method in Section 2.1, followed with some discussion and remarks in
Section 2.2. We introduce a nonlinear extension of our method in Section 2.3, with which we clarify the
connection and advantages of our method with the method of probability flow ODEs [73] and DDIM [70].

2.1 Overview

Rectified flow Given empirical observations of X0 ⇠ ⇡0, X1 ⇠ ⇡1, the rectified flow induced from
(X0, X1) is an ordinary differentiable model (ODE) on time t 2 [0, 1],

dZt = v(Zt, t)dt,

which converts Z0 from ⇡0 to a Z1 following ⇡1. The drift force v : Rd ! Rd is set to drive the flow to
follow the direction (X1 �X0) of the linear path pointing from X0 to X1 as much as possible, by solving a
simple least squares regression problem:

min
v

Z 1

0
E
h��(X1 �X0)� v

�
Xt, t

���2
i
dt, with Xt = tX1 + (1� t)X0, (1)

where Xt is the linear interpolation of X0 and X1. Naviely, Xt follows the ODE of dXt = (X1 �X0)dt,
which is non-causal (or anticipating) as the update of Xt requires the information of the final point X1. By
fitting the drift v with X1 � X0, the rectified flow causalizes the paths of linear interpolation Xt, yielding
an ODE flow that can be simulated without seeing the future.

In practice, we parameterize v with a neural network or other nonlinear models and solve (1) with any off-
the-shelf stochastic optimizer, such as stochastic gradient descent, with empirical draws of (X0, X1). See

4

∂p(X, t)
∂t

+ ∇ ⋅ [p(X, t)v] = 0

Leverage the power of modern generative models for science

https://arxiv.org/abs/1610.02415
https://arxiv.org/abs/1802.02840
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ABSTRACT

We revisit the challenging problem of training Gaussian-Bernoulli restricted
Boltzmann machines (GRBMs), introducing two innovations. We propose a novel
Gibbs-Langevin sampling algorithm that outperforms existing methods like Gibbs
sampling. We propose a modified contrastive divergence (CD) algorithm so that
one can generate images with GRBMs starting from noise. This enables direct
comparison of GRBMs with deep generative models, improving evaluation pro-
tocols in the RBM literature. Moreover, we show that modified CD and gradient
clipping are enough to robustly train GRBMs with large learning rates, thus re-
moving the necessity of various tricks in the literature. Experiments on Gaussian
Mixtures, MNIST, FashionMNIST, and CelebA show GRBMs can generate good
samples, despite their single-hidden-layer architecture. Our code is released at:
https://github.com/lrjconan/GRBM

1 INTRODUCTION

Restricted Boltzmann machines (RBMs) (Smolensky, 1986; Freund & Haussler, 1991; Hinton,
2002) are energy-based generative models with stochastic binary units. A variant of Boltzmann
machines (Ackley et al., 1985), they have a bipartite graphical structure that enables efficient proba-
bilistic inference, and they can be stacked to form deep belief networks (DBNs) (Hinton & Salakhut-
dinov, 2006; Bengio et al., 2006; Hinton et al., 2006). Gaussian-Bernoulli RBMs (GRBMs) (Welling
et al., 2004; Hinton & Salakhutdinov, 2006) extend RBMs to model continuous data by replacing
the binary visible units of the RBM with Gaussian random variables.

GRBMs remain challenging to learn, however, despite many proposed modifications to the model
or training algorithm. For instance, Lee et al. (2007) add a regularization term to encourage sparsely
activated binary hidden units. Krizhevsky et al. (2009) attribute the difficulties in learning to high-
frequency noise present in natural images. Factorized high-order terms were introduced in (Ranzato
& Hinton, 2010; Ranzato et al., 2010) to allow GRBMs to explicitly learn the covariance structure
among pixels. Nair & Hinton (2010) suggest that binary hidden units are problematic, and proposed
model variants with real-valued hidden units. Cho et al. (2011a; 2013) advocate the use of parallel
tempering sampling (Earl & Deem, 2005), adaptive learning rate, and enhanced gradient (Cho et al.,
2011b) to improve GRBM learning. Melchior et al. (2017) conclude that difficulties in GRBM
training are due to training algorithms rather than the model itself; they advocate the use of gradient
clipping, specialized weight initialization, and contrastive divergence (CD) (Hinton, 2002) rather
than persistent CD (Tieleman, 2008). Upadhya & Sastry (2021) propose a stochastic difference of
convex functions programming (S-DCP) algorithm to replace CD in training GRBMs.

An important motivation for seeking to improve GRBM learning is so that a GRBM can be used to
convert real-valued data to stochastic binary data. This would make it easy for researchers to explore
novel ways of implementing stochastic binary Boltzmann machines to model real-valued data. To
that end, we propose improved GRBM learning methods for image data. Specifically,

• We propose a hybrid Gibbs-Langevin sampling algorithm that outperforms predominant
use of Gibbs sampling. To the best of our knowledge this is the first use of Langevin
sampling for GRBM training (with or without Metropolis adjustment).

⇤Work done partially as a visiting faculty researcher at Google Brain.
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p(X) ≥ 0X

Normalization ? Sampling ?

∫ dX p(X) X ∼ p(X)

So, why do we need “generative models” ?

So, why bother ?



归⼀化难题
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360 29 — Monte Carlo Methods

where Z =
∫
dxdy P ∗(x) is the volume of the lake. You are provided with a

boat, a satellite navigation system, and a plumbline. Using the navigator, you
can take your boat to any desired location x on the map; using the plumbline
you can measure P ∗(x) at that point. You can also measure the plankton
concentration there.

Problem 1 is to draw 1 cm3 water samples at random from the lake, in
such a way that each sample is equally likely to come from any point within
the lake. Problem 2 is to find the average plankton concentration.

These are difficult problems to solve because at the outset we know nothing
about the depth P ∗(x). Perhaps much of the volume of the lake is contained

Figure 29.3. A slice through a lake
that includes some canyons.

in narrow, deep underwater canyons (figure 29.3), in which case, to correctly
sample from the lake and correctly estimate Φ our method must implicitly
discover the canyons and find their volume relative to the rest of the lake.
Difficult problems, yes; nevertheless, we’ll see that clever Monte Carlo methods
can solve them.

Uniform sampling

Having accepted that we cannot exhaustively visit every location x in the
state space, we might consider trying to solve the second problem (estimating
the expectation of a function φ(x)) by drawing random samples {x(r)}R

r=1

uniformly from the state space and evaluating P ∗(x) at those points. Then
we could introduce a normalizing constant ZR, defined by

ZR =
R∑

r=1

P ∗(x(r)), (29.16)

and estimate Φ =
∫

dNx φ(x)P (x) by

Φ̂ =
R∑

r=1

φ(x(r))
P ∗(x(r))

ZR
. (29.17)

Is anything wrong with this strategy? Well, it depends on the functions φ(x)
and P ∗(x). Let us assume that φ(x) is a benign, smoothly varying function
and concentrate on the nature of P ∗(x). As we learnt in Chapter 4, a high-
dimensional distribution is often concentrated in a small region of the state
space known as its typical set T , whose volume is given by |T | ≃ 2H(X), where
H(X) is the entropy of the probability distribution P (x). If almost all the
probability mass is located in the typical set and φ(x) is a benign function,
the value of Φ =

∫
dNx φ(x)P (x) will be principally determined by the values

that φ(x) takes on in the typical set. So uniform sampling will only stand
a chance of giving a good estimate of Φ if we make the number of samples
R sufficiently large that we are likely to hit the typical set at least once or
twice. So, how many samples are required? Let us take the case of the Ising
model again. (Strictly, the Ising model may not be a good example, since it
doesn’t necessarily have a typical set, as defined in Chapter 4; the definition
of a typical set was that all states had log probability close to the entropy,
which for an Ising model would mean that the energy is very close to the
mean energy; but in the vicinity of phase transitions, the variance of energy,
also known as the heat capacity, may diverge, which means that the energy
of a random state is not necessarily expected to be very close to the mean
energy.) The total size of the state space is 2N states, and the typical set has
size 2H . So each sample has a chance of 2H/2N of falling in the typical set.

“Intractable” partition function   
appears widely in machine learning and statistical physics (entropy and free energy calculation)

Z

Z = ∫ dX e−E(X)



4 Monte Carlo methods

dom numbers differed, i.e. the pebbles landed at different locations in
each run.

We shall return later to this table when computing the statistical er-
rors to be expected from Monte Carlo calculations. In the meantime, we
intend to show that the Monte Carlo method is a powerful approach for
the calculation of integrals (in mathematics, physics, and other fields).
But let us not get carried away: none of the results in Table 1.1 has
fallen within the tight error bounds already known since Archimedes
from comparing a circle with regular n-gons:

3.141 ≃ 3
10
71

< < 3
1
7
≃ 3.143. (1.1)

The children’s value for is very approximate, but improves and finally
becomes exact in the limit of an infinite number of trials. This is Jacob
Bernoulli’s weak law of large numbers (see Subsection 1.3.2). The chil-
dren also adopt a very sensible rule: they decide on the total number of
throws before starting the game. The other day, in a game of “N=4000”,
they had at some point 355 hits for 452 trials—this gives a very nice ap-

355
452

=
355

4 × 113
= 1

4 × 3.14159292 . . .

/4 = 1
4 × 3.14159265 . . .

proximation to the book value of . Without hesitation, they went on
until the 4000th pebble was cast. They understand that one must not
stop a stochastic calculation simply because the result is just right, nor
should one continue to play because the result is not close enough to
what we think the answer should be.

1.1.2 Markov-chain sampling

In Monte Carlo, it is not only children who play at pebble games. We
can imagine that adults, too, may play their own version at the local
heliport, in the late evenings. After stowing away all their helicopters,
they wander around the square-shaped landing pad (Fig. 1.2), which
looks just like the area in the children’s game, only bigger.

Fig. 1.2 Adults computing the number at the Monte Carlo heliport.

采样难题
X ∼ p(X)
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heliport, in the late evenings. After stowing away all their helicopters,
they wander around the square-shaped landing pad (Fig. 1.2), which
looks just like the area in the children’s game, only bigger.

Fig. 1.2 Adults computing the number at the Monte Carlo heliport.

Direct sampling is generally difficult in high-dimensional space
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The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51

`

(
i1•••in

1
n!

h i1
•••h in

^Si1
•••Sin

&c
~o ! (27)

For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.
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Figure 1. The proposed modeling framework trained on 2-d swiss roll data. The top row shows time slices from the forward trajectory
q
⇣
x(0···T )

⌘
. The data distribution (left) undergoes Gaussian diffusion, which gradually transforms it into an identity-covariance Gaus-

sian (right). The middle row shows the corresponding time slices from the trained reverse trajectory p
⇣
x(0···T )

⌘
. An identity-covariance

Gaussian (right) undergoes a Gaussian diffusion process with learned mean and covariance functions, and is gradually transformed back
into the data distribution (left). The bottom row shows the drift term, fµ

⇣
x(t), t

⌘
� x(t), for the same reverse diffusion process.

nealed Importance Sampling (AIS) (Neal, 2001), which
uses a Markov chain which slowly converts one distribu-
tion into another to compute a ratio of normalizing con-
stants. In (Burda et al., 2014) it is shown that AIS can also
be performed using the reverse rather than forward trajec-
tory. Langevin dynamics (Langevin, 1908), which are the
stochastic realization of the Fokker-Planck equation, show
how to define a Gaussian diffusion process which has any
target distribution as its equilibrium. In (Suykens & Vande-
walle, 1995) the Fokker-Planck equation is used to perform
stochastic optimization. Finally, the Kolmogorov forward
and backward equations (Feller, 1949) show that for many
forward diffusion processes, the reverse diffusion processes
can be described using the same functional form.

2. Algorithm
Our goal is to define a forward (or inference) diffusion pro-
cess which converts any complex data distribution into a
simple, tractable, distribution, and then learn a finite-time
reversal of this diffusion process which defines our gener-
ative model distribution (See Figure 1). We first describe
the forward, inference diffusion process. We then show

how the reverse, generative diffusion process can be trained
and used to evaluate probabilities. We also derive entropy
bounds for the reverse process, and show how the learned
distributions can be multiplied by any second distribution
(e.g. as would be done to compute a posterior when in-
painting or denoising an image).

2.1. Forward Trajectory

We label the data distribution q
�
x(0)

�
. The data distribu-

tion is gradually converted into a well behaved (analyti-
cally tractable) distribution ⇡ (y) by repeated application
of a Markov diffusion kernel T⇡ (y|y0;�) for ⇡ (y), where
� is the diffusion rate,

⇡ (y) =

Z
dy0

T⇡ (y|y0;�)⇡ (y0) (1)

q

⇣
x(t)|x(t�1)

⌘
= T⇡

⇣
x(t)|x(t�1);�t

⌘
. (2)
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Implementation: autoregressive masks
Masked Autoencoder Germain et al, 1502.03509

Solving Quantum Statistical Mechanics with
Variational Autoregressive Networks and Quantum Circuits

Jin-Guo Liu,1 Liang Mao,2 Pan Zhang,3 and Lei Wang1, 4

1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2Department of Physics, Tsinghua University, Beijing 100084, China
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We extend the ability of unitary quantum circuits by interfacing it with classical autoregressive neural net-
works. The combined model parametrizes a variational density matrix as a classical mixture of quantum pure
states, where the autoregressive network generates bitstring samples as input states to the quantum circuit. We
devise an e�cient variational algorithm to jointly optimize the classical neural network and the quantum circuit
for quantum statistical mechanics problems. One can obtain thermal observables such as the variational free
energy, entropy, and specific heat. As a by product, the algorithm also gives access to low energy excitation
states. We demonstrate applications to thermal properties and excitation spectra of the quantum Ising model
with resources that are feasible on near-term quantum computers.

Introduction– Quantum statistical mechanics poses two
sets of challenges to classical computational approaches. First
of all, classical algorithms generally encounter the di�culties
of diagonalzing exponentially large Hamiltonians or the sign
problem originates from the quantum nature of the problem.
Moreover, even on the eigenbasis one still faces intractable
partition function which involves summation of exponentially
large number of terms.

A straightforward way to address these di�culties is to di-
rectly realize the physical Hamiltonian on analog quantum de-
vices and study the system at thermal equilibrium, for exam-
ple, see Refs. [1, 2]. On the other hand, a potentially more
general approach would be to study thermal properties with a
universal gate model quantum computer. However, it calls for
algorithmic innovations to prepare thermal quantum states on
quantum circuits given their unitary nature. There have been
quantum algorithms to prepare thermal Gibbs states on quan-
tum computers [3–7]. Unfortunately, these approaches may
not be feasible on near-term noisy quantum computers with
limited circuit depth. While variational quantum algorithm
for preparing thermofield double states [8, 9] requires addi-
tional quantum resources such as ancilla qubits, as well as
measuring and extrapolating Renyi entropies. The quantum
imaginary-time evolution [10] relies on exponentially di�cult
tomography on a growing number of qubits and synthesize of
general multi-qubit unitaries.

Recently, Refs. [11, 12] proposed practical approaches to
prepare the thermal density matrix as a classical mixture of
quantum pure states in the eigenbasis. In these proposals,
the classical probabilistic model is either assumed to be fac-
torized or expressed as an energy-based model [13]. How-
ever, the factorized distribution is generally a crude approx-
imation for the Gibbs distribution in the eigenbasis. While
the energy-based model still faces the problem of intractable
partition function, which inhibits e�cient and unbiased sam-
pling, learning, or even evaluating the model likelihood.

Modern probabilistic generative models o↵er solutions to
the intractable partition function problem [15] since the goals
of generative modeling are exactly to represent, learn and

U�

(a)

p�

(b)

�x1
�x2
�x3

x1
x2
x3

Figure 1. (a) The autoregressive network shown in blue is a classi-
cal probabilistic model that parametrizes a joint distribution in the
form of Eq. (2). The model generates bit string as easy to prepare
input product states to the quantum circuit. The neural network and
the circuit produce a parametrized density matrix Eq. (1). (b) An
implementation of the autoregressive model p� using the masked au-
toencoder [14]. The neural network maps bit strings to real-valued
outputs which parametrizes the conditional probabilities in Eq. (2).

sample from complex high-dimensional probability distribu-
tions e�ciently. Popular generative models include autore-
gressive models [14, 16, 17], variational autoencoders [18],
generative adversarial networks [19], and flow-based mod-
els [20]. For the purpose of this study, the autoregressive mod-
els stand out since they support unbiased gradient estimator
for discrete variables, direct sampling, and tractable likelihood
at the same time. The autoregressive models have reached
state-of-the-art performance in modeling realistic data and
found real-world applications in synthesizing natural speech
and images [16, 17]. Variational optimization of the autore-
gressive network has been used for classical statistical physics
problems [21, 22]. Quantum generalization of the network
was also employed for ground state of quantum many-body
systems [23].

In this paper, we combine quantum circuits with autore-
gressive probabilistic models to solve problems in quantum
statistical mechanics. The resulting model allows one to per-
form variational free energy over density matrices e�ciently.
We demonstrate applications of the approach to thermal prop-
erties and excitations of quantum lattice model.
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Bit strings Probabilities

Other ways to implement autoregressive models: recurrent networks



Mask convolutional kernel Mask self-attention matrix
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Figure 1: Left: A visualization of the PixelCNN that maps a neighborhood of pixels to prediction for
the next pixel. To generate pixel xi the model can only condition on the previously generated pixels
x1, . . . xi�1. Middle: an example matrix that is used to mask the 5x5 filters to make sure the model
cannot read pixels below (or strictly to the right) of the current pixel to make its predictions. Right:
Top: PixelCNNs have a blind spot in the receptive field that can not be used to make predictions.
Bottom: Two convolutional stacks (blue and purple) allow to capture the whole receptive field.

combine the strengths of both models by introducing a gated variant of PixelCNN (Gated PixelCNN)
that matches the log-likelihood of PixelRNN on both CIFAR and ImageNet, while requiring less than
half the training time.

We also introduce a conditional variant of the Gated PixelCNN (Conditional PixelCNN) that allows
us to model the complex conditional distributions of natural images given a latent vector embedding.
We show that a single Conditional PixelCNN model can be used to generate images from diverse
classes such as dogs, lawn mowers and coral reefs, by simply conditioning on a one-hot encoding
of the class. Similarly one can use embeddings that capture high level information of an image to
generate a large variety of images with similar features. This gives us insight into the invariances
encoded in the embeddings — e.g., we can generate different poses of the same person based on a
single image. The same framework can also be used to analyse and interpret different layers and
activations in deep neural networks.

2 Gated PixelCNN

PixelCNNs (and PixelRNNs) [30] model the joint distribution of pixels over an image x as the
following product of conditional distributions, where xi is a single pixel:

p(x) =
n2Y

i=1

p(xi|x1, ..., xi�1). (1)

The ordering of the pixel dependencies is in raster scan order: row by row and pixel by pixel within
every row. Every pixel therefore depends on all the pixels above and to the left of it, and not on any
of other pixels. The dependency field of a pixel is visualized in Figure 1 (left).

A similar setup has been used by other autoregressive models such as NADE [14] and RIDE [26].
The difference lies in the way the conditional distributions p(xi|x1, ..., xi�1) are constructed. In
PixelCNN every conditional distribution is modelled by a convolutional neural network. To make
sure the CNN can only use information about pixels above and to the left of the current pixel, the
filters of the convolution are masked as shown in Figure 1 (middle). For each pixel the three colour
channels (R, G, B) are modelled successively, with B conditioned on (R, G), and G conditioned on R.
This is achieved by splitting the feature maps at every layer of the network into three and adjusting the
centre values of the mask tensors. The 256 possible values for each colour channel are then modelled
using a softmax.

PixelCNN typically consists of a stack of masked convolutional layers that takes an N x N x 3 image
as input and produces N x N x 3 x 256 predictions as output. The use of convolutions allows the
predictions for all the pixels to be made in parallel during training (all conditional distributions from
Equation 1). During sampling the predictions are sequential: every time a pixel is predicted, it is

2

PixelCNN, van den Oord et al, 1601.06759 Causal transformer, Vaswani et al 1706.03762

Implementation: autoregressive masks
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Scaling law of the loss function
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Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute2 used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.

Performance depends strongly on scale, weakly on model shape: Model performance depends most
strongly on scale, which consists of three factors: the number of model parameters N (excluding embed-
dings), the size of the dataset D, and the amount of compute C used for training. Within reasonable limits,
performance depends very weakly on other architectural hyperparameters such as depth vs. width. (Section
3)

Smooth power laws: Performance has a power-law relationship with each of the three scale factors
N,D,C when not bottlenecked by the other two, with trends spanning more than six orders of magnitude
(see Figure 1). We observe no signs of deviation from these trends on the upper end, though performance
must flatten out eventually before reaching zero loss. (Section 3)

Universality of overfitting: Performance improves predictably as long as we scale up N and D in tandem,
but enters a regime of diminishing returns if either N or D is held fixed while the other increases. The
performance penalty depends predictably on the ratio N0.74/D, meaning that every time we increase the
model size 8x, we only need to increase the data by roughly 5x to avoid a penalty. (Section 4)

Universality of training: Training curves follow predictable power-laws whose parameters are roughly
independent of the model size. By extrapolating the early part of a training curve, we can roughly predict the
loss that would be achieved if we trained for much longer. (Section 5)

Transfer improves with test performance: When we evaluate models on text with a different distribution
than they were trained on, the results are strongly correlated to those on the training validation set with
a roughly constant offset in the loss – in other words, transfer to a different distribution incurs a constant
penalty but otherwise improves roughly in line with performance on the training set. (Section 3.2.2)

Sample efficiency: Large models are more sample-efficient than small models, reaching the same level of
performance with fewer optimization steps (Figure 2) and using fewer data points (Figure 4).

Convergence is inefficient: When working within a fixed compute budget C but without any other restric-
tions on the model size N or available data D, we attain optimal performance by training very large models
and stopping significantly short of convergence (see Figure 3). Maximally compute-efficient training would
therefore be far more sample efficient than one might expect based on training small models to convergence,
with data requirements growing very slowly as D ⇠ C0.27 with training compute. (Section 6)

Optimal batch size: The ideal batch size for training these models is roughly a power of the loss only,
and continues to be determinable by measuring the gradient noise scale [MKAT18]; it is roughly 1-2 million
tokens at convergence for the largest models we can train. (Section 5.1)

Taken together, these results show that language modeling performance improves smoothly and predictably
as we appropriately scale up model size, data, and compute. We expect that larger language models will
perform better and be more sample efficient than current models.

3

Kaplan et al, 2001.08361

“It would also be exciting to find a theoretical framework from which the scaling relations 
can be derived: a ‘statistical mechanics’ underlying the ‘thermodynamics’ we have observed.”

ℒ = − 𝔼X∼data [ln p(X)]



𝕂𝕃(π ∥ p) ≡ ∫ dxπ(x)[ln π(x) − ln p(x)]
𝕂𝕃(π ∥ p) ≥ 0

𝕂𝕃(π ∥ p) = 0 ⟺ π(x) = p(x)

𝕂𝕃(π ∥ p) ≠ 𝕂𝕃(p ∥ π)

Kullback–Leibler divergence



π(x) ∝ ∑
d∈data

δ(x − d)

min
θ

𝕂𝕃(π ∥ pθ) ⟺ min
θ

{−𝔼x∼data [ln pθ(x)]}

Learn from data

Maximum likelihood estimationtarget model

The lower bound is the entropy of the dataset: complete memorization



Learn from Energy 

π(x) ∝ e−E/kBT

min
θ

𝕂𝕃(pθ ∥ π) ⟺ min
θ { 𝔼

x∼pθ(x)
[E(x) + kBT ln pθ(x)]}

Variational free energytargetmodel

The lower bound is the true free energy: exact solution



Mode covering

min
θ

𝕂𝕃(data ∥ pθ)

data

Goodfellow et al, Deep Learning

pθ

e−E/kBT

Mode seeking

min
θ

𝕂𝕃(pθ ∥ e−E/kBT)

pθ

Maximum likelihood estimation Variational free energy

Forward KL or Reverse KL ?

Failure mode: local minimaFailure mode: hallucination



Pretrain with forward KL Finetune with reverse KL

learn from data  
to be a generalist

learn from reward 
to be a specialized generalist 

F = 𝔼
X∼p(X)

[r(X) + T ln p(X)]ℒ = − 𝔼X∼data [ln p(X)]

LLM LLM X ↦ r(X)

思⽽不学则殆学⽽不思则罔
—《论语·⼤模型》

RL with KL penalties is better viewed as Bayesian inference, Korbar et al, 2205.11275

The training objective of LLM
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Image: PixelCNN 1601.06759Speech: WaveNet 1609.03499

Molecular graph: 1810.11347

(b)

Figure 1: Detailed depiction of a single step of the generation process using two-dimensional toy
data (a). It shows the input and output of our architecture (top row) and steps taken when sampling
the absolute position of a new unplaced fourth atom (bottom row). Starting from the point where two
carbon atoms have been placed, the whole remaining placement process of a real-world C7O2H10

isomer generated by our architecture is documented in (b).

of probabilities of distances d(i+1)j between the new atom position and the positions of all preceding
atoms. Our architecture learns these distributions over distances instead of working with absolute
positions directly. It adheres to the invariance of molecules to rotation and translation by design as the
modeled distributions only depend on nuclear charges Z1, ..., Zi+1 and distances Di of preceding
atoms. This approach improves the scalability of our model as we are able to discretize distances
in one dimension independent from the dimensionality of the underlying positions. Using Eq. 2,
we are able to calculate the probability of absolute atom positions. While the generation process is
sequential, the model can be trained efficiently in parallel, where the distances between atoms in the
training data can be used directly as targets.

3 Adapted SchNet architecture

The feature extraction of our autoregressive architecture is shown in Figure 2. It is similar to
SchNet [24, 25] for the prediction of molecular properties. The embedding characterizing the atom
types is split into feature vector x0

i+1 of the new atom i + 1 and feature vectors (x0
1, ...,x

0
i ) of all

preceding atoms. Here lays the main difference to the predictive SchNet architecture which always
has access to the complete molecule. In contrast, our architecture works with partial molecular
data, namely the positions r1, ..., ri of already placed atoms, their nuclear charges Z1, ..., Z1, and
the nuclear charge Zi+1 of an unplaced, new atom whose position ri+1 shall be sampled using
the output of our network. The information about already placed atoms is processed just as in
the predictive SchNet model, using interaction blocks to update feature vectors depending on the

3

Ising model: 1809.10606

Pixel Recurrent Neural Networks
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Figure 2. Left: To generate pixel xi one conditions on all the pre-
viously generated pixels left and above of xi. Center: To gen-
erate a pixel in the multi-scale case we can also condition on the
subsampled image pixels (in light blue). Right: Diagram of the
connectivity inside a masked convolution. In the first layer, each
of the RGB channels is connected to previous channels and to the
context, but is not connected to itself. In subsequent layers, the
channels are also connected to themselves.

ply them to large-scale modeling of natural images. The
resulting PixelRNNs are composed of up to twelve, fast
two-dimensional Long Short-Term Memory (LSTM) lay-
ers. These layers use LSTM units in their state (Hochreiter
& Schmidhuber, 1997; Graves & Schmidhuber, 2009) and
adopt a convolution to compute at once all the states along
one of the spatial dimensions of the data. We design two
types of these layers. The first type is the Row LSTM layer
where the convolution is applied along each row; a similar
technique is described in (Stollenga et al., 2015). The sec-
ond type is the Diagonal BiLSTM layer where the convolu-
tion is applied in a novel fashion along the diagonals of the
image. The networks also incorporate residual connections
(He et al., 2015) around LSTM layers; we observe that this
helps with training of the PixelRNN for up to twelve layers
of depth.

We also consider a second, simplified architecture which
shares the same core components as the PixelRNN. We ob-
serve that Convolutional Neural Networks (CNN) can also
be used as sequence model with a fixed dependency range,
by using Masked convolutions. The PixelCNN architec-
ture is a fully convolutional network of fifteen layers that
preserves the spatial resolution of its input throughout the
layers and outputs a conditional distribution at each loca-
tion.

Both PixelRNN and PixelCNN capture the full generality
of pixel inter-dependencies without introducing indepen-
dence assumptions as in e.g., latent variable models. The
dependencies are also maintained between the RGB color
values within each individual pixel. Furthermore, in con-
trast to previous approaches that model the pixels as con-
tinuous values (e.g., Theis & Bethge (2015); Gregor et al.
(2014)), we model the pixels as discrete values using a
multinomial distribution implemented with a simple soft-
max layer. We observe that this approach gives both repre-
sentational and training advantages for our models.

The contributions of the paper are as follows. In Section
3 we design two types of PixelRNNs corresponding to the
two types of LSTM layers; we describe the purely convo-
lutional PixelCNN that is our fastest architecture; and we
design a Multi-Scale version of the PixelRNN. In Section 5
we show the relative benefits of using the discrete softmax
distribution in our models and of adopting residual connec-
tions for the LSTM layers. Next we test the models on
MNIST and on CIFAR-10 and show that they obtain log-
likelihood scores that are considerably better than previous
results. We also provide results for the large-scale Ima-
geNet dataset resized to both 32 ⇥ 32 and 64 ⇥ 64 pixels;
to our knowledge likelihood values from generative models
have not previously been reported on this dataset. Finally,
we give a qualitative evaluation of the samples generated
from the PixelRNNs.

2. Model

Our aim is to estimate a distribution over natural images
that can be used to tractably compute the likelihood of im-
ages and to generate new ones. The network scans the im-
age one row at a time and one pixel at a time within each
row. For each pixel it predicts the conditional distribution
over the possible pixel values given the scanned context.
Figure 2 illustrates this process. The joint distribution over
the image pixels is factorized into a product of conditional
distributions. The parameters used in the predictions are
shared across all pixel positions in the image.

To capture the generation process, Theis & Bethge (2015)
propose to use a two-dimensional LSTM network (Graves
& Schmidhuber, 2009) that starts at the top left pixel and
proceeds towards the bottom right pixel. The advantage of
the LSTM network is that it effectively handles long-range
dependencies that are central to object and scene under-
standing. The two-dimensional structure ensures that the
signals are well propagated both in the left-to-right and top-
to-bottom directions.

In this section we first focus on the form of the distribution,
whereas the next section will be devoted to describing the
architectural innovations inside PixelRNN.

2.1. Generating an Image Pixel by Pixel

The goal is to assign a probability p(x) to each image x
formed of n⇥n pixels. We can write the image x as a one-
dimensional sequence x1, ..., xn2 where pixels are taken
from the image row by row. To estimate the joint distri-
bution p(x) we write it as the product of the conditional
distributions over the pixels:

p(x) =
n2Y

i=1

p(xi|x1, ..., xi�1) (1)

Because models with causal convolutions do not have recurrent connections, they are typically faster
to train than RNNs, especially when applied to very long sequences. One of the problems of causal
convolutions is that they require many layers, or large filters to increase the receptive field. For
example, in Fig. 2 the receptive field is only 5 (= #layers + filter length - 1). In this paper we use
dilated convolutions to increase the receptive field by orders of magnitude, without greatly increasing
computational cost.

A dilated convolution (also called à trous, or convolution with holes) is a convolution where the
filter is applied over an area larger than its length by skipping input values with a certain step. It is
equivalent to a convolution with a larger filter derived from the original filter by dilating it with zeros,
but is significantly more efficient. A dilated convolution effectively allows the network to operate on
a coarser scale than with a normal convolution. This is similar to pooling or strided convolutions, but
here the output has the same size as the input. As a special case, dilated convolution with dilation
1 yields the standard convolution. Fig. 3 depicts dilated causal convolutions for dilations 1, 2, 4,
and 8. Dilated convolutions have previously been used in various contexts, e.g. signal processing
(Holschneider et al., 1989; Dutilleux, 1989), and image segmentation (Chen et al., 2015; Yu &
Koltun, 2016).

Input

Hidden Layer
Dilation = 1

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 4

Output
Dilation = 8

Figure 3: Visualization of a stack of dilated causal convolutional layers.

Stacked dilated convolutions enable networks to have very large receptive fields with just a few lay-
ers, while preserving the input resolution throughout the network as well as computational efficiency.
In this paper, the dilation is doubled for every layer up to a limit and then repeated: e.g.

1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512.

The intuition behind this configuration is two-fold. First, exponentially increasing the dilation factor
results in exponential receptive field growth with depth (Yu & Koltun, 2016). For example each
1, 2, 4, . . . , 512 block has receptive field of size 1024, and can be seen as a more efficient and dis-
criminative (non-linear) counterpart of a 1⇥1024 convolution. Second, stacking these blocks further
increases the model capacity and the receptive field size.

2.2 SOFTMAX DISTRIBUTIONS

One approach to modeling the conditional distributions p (xt | x1, . . . , xt�1) over the individual
audio samples would be to use a mixture model such as a mixture density network (Bishop, 1994)
or mixture of conditional Gaussian scale mixtures (MCGSM) (Theis & Bethge, 2015). However,
van den Oord et al. (2016a) showed that a softmax distribution tends to work better, even when the
data is implicitly continuous (as is the case for image pixel intensities or audio sample values). One
of the reasons is that a categorical distribution is more flexible and can more easily model arbitrary
distributions because it makes no assumptions about their shape.

Because raw audio is typically stored as a sequence of 16-bit integer values (one per timestep), a
softmax layer would need to output 65,536 probabilities per timestep to model all possible values.
To make this more tractable, we first apply a µ-law companding transformation (ITU-T, 1988) to
the data, and then quantize it to 256 possible values:

f (xt) = sign(xt)
ln (1 + µ |xt|)
ln (1 + µ)

,

3
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been challenging to conventional MCMC and mean-field
approaches.
Next, to demonstrate the ability of capturing multiple

states at low temperature, we consider the Hopfield
model [32], where N spins are connected to each other.
The couplings composed of P random patterns,
Jij ¼ ð1=NÞ

PP
μ¼1 ξ

μ
i ξ

μ
j , with fξμg ∈ f$1gN denoting a

random pattern. At a low temperature with P small, the
system has a retrieval phase where all P patterns are
remembered by the system; hence there are P pure states
in the system [33,34]. The experiments are carried out on a
Hopfield network with N ¼ 100 spins and P ¼ 2 orthogo-
nal random patterns. At low temperature the energy
(probability) landscape contains four modes, corresponding
to two stored patterns and their mirrors (due to Z2

symmetry). As opposed to models defined on lattices,
there is no topology structure to apply convolution, so we
use a simplest VAN with only one layer and NðN − 1Þ=2
parameters. We start training our network at β ¼ 0.3 and
slowly anneal the temperature to β ¼ 1.5. At each temper-
ature, we sample configurations from the trained VAN, and
show their log probability in Fig. 3.
The figure shows that at high temperature with β ¼ 0.3,

samplings are not correlated with the two stored patterns,
and the system is in the paramagnetic state. The log
probability landscape is quite flat, as the Gibbs measure
is dominated by entropy. When β is increased to 1.5, four
peaks of probability emerge and dominate over other
configurations. These four peaks touch coordinates [1, 0],
[0, 1], ½−1; 0&, and ½0;−1& in the X-Y plane, which
correspond exactly to the two patterns and their mirrors.
This is an evidence that our approach avoids collapsing into
a single mode, and gives samplings capturing the features
of the whole landscape, despite that those modes are
separated by high barriers.
Compared with the landscape of Hopfield model in the

retrieval phase which exhibits several local minima in the
energy and probability landscape, models in the spin glass

phase are considerably more complex [35], because they
have an infinite number of pure states, in the picture of
replica symmetry breaking [36]. Here we apply our method
to the classic Sherrington-Kirkpatrick (SK) model [37],
where N spins are connected to each other by couplings Jij
drawn from Gaussian distribution with variance 1=N. So
far the tensor network approaches do not apply to this
model because of long range interactions and the disorder,
which causes negative Z issue [38]. On the thermodynamic
limit with N → ∞ where the free energy concentrates to its
mean value averaged over disorder, using for example
replica method and cavity method, and replica symmetry
breaking, i.e., the Parisi formula [36]. On a single instance
of SK model, the algorithm version of the cavity method,
belief propagation, or Thouless-Anderson-Paler [6] equa-
tions apply as message passing algorithms. On large
systems in the replica symmetry phase, the message
passing algorithms converge and the obtained Bethe free
energy is a good approximation, but in the replica sym-
metry breaking phase they fail to converge. Also notice that
even in the replica symmetry phase, Bethe free energy is
not an upper bound to the true free energy.
As a proof of concept, we use a small system size

N ¼ 20, so we can enumerate all 2N configurations,
compute the exact value of free energy, then evaluate the
performance of our approach. Again, we use a simple VAN
with only one layer.
In Fig. 4(a) we show the free energy obtained from VAN,

compared with NMF and Bethe approximations. The free
energy from VAN is much better than NMF and Bethe, and
even indistinguishable to the exact value. This is quite
remarkable considering that VAN adopts only NðN − 1Þ=2
parameters, which is even smaller than that used in the
belief propagation, NðN − 1Þ. We also checked that our
approach not only gives a good estimate on free energy, it
also obtains accurate energy, entropy, magnetizations, and
correlations.
The ability of solving ordinary statistical mechanics

problems also gives us the ability to solve inverse statistical
mechanics problems. A prototype problem is the inverse

FIG. 3. Log probability of sampled configurations from VAN
trained for a Hopfield model with N ¼ 100 spins, and P ¼ 2
orthogonal patterns. The sampled configurations are projected
onto the two-dimensional space spanned by the two patterns. X
axis (O1) and Y axis (O2) are the overlap (inner product,
normalized to ½−1; 1&) between each sampled configuration
and the two patterns, respectively. (a) β ¼ 0.3, and the system
is in the paramagnetic phase. (b) β ¼ 1.5, and the system is in the
retrieval phase. Note the different scales in the color bars.
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FIG. 4. (a) Free energy of SK model with N ¼ 20 spins. The
inset shows relative errors to exact values in a larger β regime.
Bethe converges only when β ≤ 1.5. (b) The reconstruction error
in the inverse Ising problem. The underlying model is an SK
model with N ¼ 20 spins. VAN uses a network with two layers (a
hidden layer and an output layer).
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p(X) = ∏
i

p(xi)

p(X) = ∏
i

p(xi) ∏
(i,j)∈E

p(xi, xj)
p(xi)p(xj)

Variational autoregressive network for statistical mechanics

Wu, LW, Zhang, PRL ’19 
github.com/wdphy16/stat-mech-van

Variational autoregressive  
network

p(X) = ∏
i

p(xi |x<i)



Variational autoregressive quantum states

Sharir, Levine, Wies, Carleo, Shashua, PRL ’20 
Hibat-Allah, Ganahl, Hayward,  Melko, Carrasquilla, PRResarch ‘20

ψ(σ) = ψ(σ1)ψ(σ2 |σ1)ψ(σ3 |σ1, σ2)⋯

Barrett et al, Nat. Mach. Intell. ’22

N2 molecule, Choo et al, Nat. Comm. ’20

and double excitations (CISD). In CISD, the Hilbert space is
truncated to include only states which are up to two excitations
away from the Hartree–Fock configuration. It is clear from the
histogram that the RBM is able to capture correlations beyond
double excitations.

Alternative encodings. The above computations were done using
the Jordan–Wigner mapping. To investigate the effect of the
mapping choice on the performance of the RBM, we also per-
formed select calculations using the parity and Bravyi–Kitaev
mappings. All the aforementioned transformations require a
number of spins equal to the number of fermionic modes in the
model. However, the support of the Pauli operators wj= ∣σj∣ in
Eq. (4), i.e., the number of single-qubit Pauli operators in σj that
are different from the identity I, depends on the specific mapping
used. Jordan–Wigner and parity mappings have linear scalings
wj=O(N), while the Bravyi–Kitaev encoding has a more favor-
able scaling wj ¼ Oðlog ðNÞÞ, due to the logarithmic spin support
of the update, parity, and remainder sets in Eq. (2). Note that one
could in principle use generalized superfast mappings42, which
have a support scaling as good as wj ¼ Oðlog ðdÞÞ, where d is the
maximum degree of the fermionic interaction graph defined by
Eq. (1). However, such a mapping is not practical for the models
considered here because the typical large degree of molecular
interactions graphs makes the number of spins required for the
simulation too large compared to the other model-agnostic
mappings.

While these encodings are routinely used as tools to study
fermionic problems on quantum hardware43, their use in classical
computing has not been systematically explored so far. Since they
yield different structured many-body wave functions, it is then
worth analyzing whether more local mappings can be beneficial
for specific NQS representations. In Fig. 3, we analyze the effect of
the different encodings on the accuracy of the variational ground-
state energy for a few representative diatomic molecules. At fixed
computational resources and network expressivity, we typically
find that the RBM ansatz can achieve consistent levels of
accuracy, independent of the nature of the mapping type. While
the Jordan–Wigner allows to achieve the lowest energies in those
examples, the RBM is nonetheless able to efficiently learn the
ground state also in other representations, and chemical accuracy
is achieved in all cases reported in Fig. 3.

Sampling larger basis sets. The spin-based simulations of the QC
problems studied here show a distinctive MCMC sampling
behavior that is not usually found in lattice model simulations of
pure spin models. Specifically, the ground-state wave function of
the diatomic molecules considered is typically sharply peaked
around the Hartree–Fock state, and neighboring excited states.
This behavior is prominently shown also in Fig. 2, where the
largest peaks are several order of magnitude larger than the dis-
tribution tail. As a result of this structure, any uniform sampling
scheme drawing states σ! from the VMC distribution jΨMð σ!Þj2,
is bound to repeatedly draw the most dominant states, while only
rarely sampling less likely configurations. To exemplify this
peculiarity, we study the behavior of the ground state energy as a
function of the number of MCMC samples used at each step of
the VMC optimization. We concentrate on the water molecule in
the larger 6-31g basis. In this case, the Metropolis sampling
scheme exhibits acceptance rates as low as 0.1% or less, as a

Fig. 2 Electronic correlations. Probabilities (in logarithmic scale) of the
500 most probable configurations in the FCI (blue), RBM (orange), and
CISD (green) wavefunctions for the equilibrium nitrogen N2 molecule in the
STO-3G basis.

LiH

N2

Fig. 3 Comparison of different spin mappings. Accuracy of the RBM
(green star) representations for three different mapping types
(Jordan–Wigner, Parity, and Bravyi–Kitaev) and three different molecules
(LiH, C2, and N2) in their equilibrium configuration in the STO-3G basis.
The geometries used are reported in the Methods section.

Fig. 4 Sampling size dependence of the converged energies. Converged
energy of H2O in the 6-31g basis (26 spin-orbitals) as the number of
samples used for each VMC iteration is varied. The converged energy for
the samples obtained using the Metropolis algorithm (blue circles) matches
that obtained using exact sampling (green crosses), beating the accuracy of
CISD and approaching chemical accuracy (red line) for the largest sample
size. In the inset, we also show the variational energy as the number of
hidden units is increased from 2 to 26.
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Demo: Generative model of Sycamore data
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100001111011
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100001111000
100101001001
001000001010

Quantum chip Transformer

Can we fake the measurement of the sycamore quantum circuit by training a transformer?
https://colab.research.google.com/drive/11War0qULkudKT3h2i5J6r_EmA4wFKk0Z?usp=sharing
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G 0
21~ ivn!5ivn1m2t2G~ ivn!. (23)

The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51

`

(
i1•••in

1
n!

h i1
•••h in

^Si1
•••Sin

&c
~o ! (27)

For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.
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Deep Unsupervised Learning using Nonequilibrium Thermodynamics
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q
�
x(0···T )

�

p
�
x(0···T )
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�
x(t)
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�
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Figure 1. The proposed modeling framework trained on 2-d swiss roll data. The top row shows time slices from the forward trajectory
q
⇣
x(0···T )

⌘
. The data distribution (left) undergoes Gaussian diffusion, which gradually transforms it into an identity-covariance Gaus-

sian (right). The middle row shows the corresponding time slices from the trained reverse trajectory p
⇣
x(0···T )

⌘
. An identity-covariance

Gaussian (right) undergoes a Gaussian diffusion process with learned mean and covariance functions, and is gradually transformed back
into the data distribution (left). The bottom row shows the drift term, fµ

⇣
x(t), t

⌘
� x(t), for the same reverse diffusion process.

nealed Importance Sampling (AIS) (Neal, 2001), which
uses a Markov chain which slowly converts one distribu-
tion into another to compute a ratio of normalizing con-
stants. In (Burda et al., 2014) it is shown that AIS can also
be performed using the reverse rather than forward trajec-
tory. Langevin dynamics (Langevin, 1908), which are the
stochastic realization of the Fokker-Planck equation, show
how to define a Gaussian diffusion process which has any
target distribution as its equilibrium. In (Suykens & Vande-
walle, 1995) the Fokker-Planck equation is used to perform
stochastic optimization. Finally, the Kolmogorov forward
and backward equations (Feller, 1949) show that for many
forward diffusion processes, the reverse diffusion processes
can be described using the same functional form.

2. Algorithm
Our goal is to define a forward (or inference) diffusion pro-
cess which converts any complex data distribution into a
simple, tractable, distribution, and then learn a finite-time
reversal of this diffusion process which defines our gener-
ative model distribution (See Figure 1). We first describe
the forward, inference diffusion process. We then show

how the reverse, generative diffusion process can be trained
and used to evaluate probabilities. We also derive entropy
bounds for the reverse process, and show how the learned
distributions can be multiplied by any second distribution
(e.g. as would be done to compute a posterior when in-
painting or denoising an image).

2.1. Forward Trajectory

We label the data distribution q
�
x(0)

�
. The data distribu-

tion is gradually converted into a well behaved (analyti-
cally tractable) distribution ⇡ (y) by repeated application
of a Markov diffusion kernel T⇡ (y|y0;�) for ⇡ (y), where
� is the diffusion rate,

⇡ (y) =

Z
dy0

T⇡ (y|y0;�)⇡ (y0) (1)

q

⇣
x(t)|x(t�1)

⌘
= T⇡

⇣
x(t)|x(t�1);�t

⌘
. (2)
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Intuition

If the mapping f is 1-to-1, then the total area (or volume) should

not change after the transformation from x to z .

Figure 1: Mapping from one probability density to another. Source:

Lecture 19 notes
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Normalizing flow in a nutshell
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Physics intuition of normalizing flow
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Neural Network Renormalization Group

Shuo-Hui Li1, 2 and Lei Wang1, ⇤

1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2University of Chinese Academy of Sciences, Beijing 100049, China

We present a variational renormalization group approach using deep generative model composed of bijectors.
The model can learn hierarchical transformations from physical variables to renormalized collective variables.
Conversely, it directly generates statistically independent physical configurations by iterative refinement at var-
ious length scales. The generative model has an exact and tractable likelihood, which provides renormalized
couplings between the collective variables and supports unbiased rejection sampling of the physical variables.
To train the neural network, we employ probability density distillation, in which the training loss is a variational
upper bound of the physical free energy. The approach could be useful for automatically identifying collective
variables and e↵ective field theories.

Renormalization group (RG) is one of the central schemes
in theoretical physics, whose broad impacts span from high-
energy [1] to condensed matter physics [2, 3]. In essence,
RG keeps the relevant information while reducing the dimen-
sionality of statistical data. Besides its conceptual impor-
tance, practical RG calculations have played important roles
in solving challenging problems in statistical and quantum
physics [4, 5]. A notable recent development is to perform
RG calculation using tensor network machineries [6–16]

The relevance of RG goes beyond physics. For exam-
ple, in deep learning applications such as image recognition,
the inference procedure resembles the RG flow from micro-
scopic pixels to categorical labels. Indeed, a successfully
trained deep neural network extracts a hierarchy of increas-
ingly higher-level of concepts in its deeper layers [17]. In light
of such intriguing similarities, References [18–21] drew con-
nections between deep learning and RG. References [22, 23]
employed neural networks for RG studies of physical prob-
lems, and Refs. [24–26] investigated phase transitions from a
machine learning perspective. Since the discussions are not
totally uncontroversial [19, 21, 22, 27, 28], it remains highly
desirable to establish a more concrete, rigorous, and construc-
tive connection between RG and deep learning. Such connec-
tion will not only bring powerful deep learning techniques into
solving complex physics problems but also benefit theoretical
understanding of deep learning from a physics perspective.

In this paper, we present a neural network based variational
RG approach (NeuralRG) for statistical physics problems. In
this scheme, the RG flow arises from iterative probability
transformation in a deep neural network. Integrating latest
advances in deep learning such as Normalizing Flows [29–36]
and Probability Density Distillation [37] and tensor network
architectures such as multi-scale entanglement renormaliza-
tion ansatz (MERA) [6], the proposed NeuralRG approach
has a number of interesting theoretical properties (variational,
exact and tractable likelihood, principled structure design via
information theory) and high computational e�ciency. The
NeuralRG approach is closer in spirit to the original proposal
based on Bayesian net [18] than recent discussions on Boltz-
mann Machines [19, 21, 22] and Principal Component Anal-
ysis [20].

Figure 1(a) shows the proposed neural net architecture.

Figure 1. (a) The NeuralRG network stacks bijectors into a hierar-
chical structure. The solid dots at the bottom are the physical vari-
ables x and the crosses are the latent variables z. The stars denote
the renormalized collective variables at di↵erent scales. Each block
is a bijective and di↵erentiable transformation parametrized by a bi-
jector neural network. The light gray and the dark gray blocks are
the disentanglers and the decimators respectively. The RG flows bot-
tom to top, which corresponds inferencing the latent variables from
a given physical configuration. While by sampling the latent vari-
ables according to a prior distribution and passing them downwards
one can generate the physical configuration directly. (b) The internal
structure of the bijector block consists of a real-valued non-volume
preserving flow [32].

Each building block is a di↵eomorphism, i.e., a bijective
and di↵erentiable function parametrized by a neural network,
which is denoted as a bijector [38, 39]. Figure 1(b) illustrates
a possible realization of the bijector using the real-valued non-
volume preserving flow (Real NVP) [32]. It is one of the
simplest normalizing flows [29–31, 33–36], a family of e�-
ciently invertible neural networks with tractable Jacobian de-
terminants.

The neural network relates the physical variables x and la-
tent variables z by a di↵erentiable bijective map x = g(z).
Their probability densities are also related through [40]
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We present a variational renormalization group approach using deep generative model composed of bijectors.
The model can learn hierarchical transformations from physical variables to renormalized collective variables.
Conversely, it directly generates statistically independent physical configurations by iterative refinement at var-
ious length scales. The generative model has an exact and tractable likelihood, which provides renormalized
couplings between the collective variables and supports unbiased rejection sampling of the physical variables.
To train the neural network, we employ probability density distillation, in which the training loss is a variational
upper bound of the physical free energy. The approach could be useful for automatically identifying collective
variables and e↵ective field theories.
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exact and tractable likelihood, principled structure design via
information theory) and high computational e�ciency. The
NeuralRG approach is closer in spirit to the original proposal
based on Bayesian net [18] than recent discussions on Boltz-
mann Machines [19, 21, 22] and Principal Component Anal-
ysis [20].

Figure 1(a) shows the proposed neural net architecture.
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the disentanglers and the decimators respectively. The RG flows bot-
tom to top, which corresponds inferencing the latent variables from
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ables according to a prior distribution and passing them downwards
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Quantum version of the architecture
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FIG. 1. (a) Basic construction of a k = 2 MERA (2 sites renormalized to 1). (b) The squares
represent disentanglers: unitary maps that, from the moving-upward perspective, remove entan-
glement between two adjacent sites. (c) The triangles represent isometries: linear maps that, again
from the moving-upward perspective, coarse-grain two sites into one. Moving downward, we may
think of isometries as unitary operators that, in the MERA, map a state in V ⌦ |0i into V ⌦ V .
The i and j labels in (b) and (c) represent the tensor indices of the disentangler and isometry.

attention to the case D = 1 + 1.

The MERA tensor network is shown in Fig. 1. The quantum system being modeled by

the MERA lives at the bottom of the diagram, henceforth “the boundary” in anticipation of

the AdS/MERA connection to be explored later. We can think of the tensor network as a

quantum circuit that either runs from the top down, starting with a simple input state and

constructing the boundary state, or from the bottom up, renormalizing a boundary state via

coarse-graining. One defining parameter of the MERA is the rescaling factor k, defining the

number of sites in a block to be coarse-grained; in Fig. 1 we have portrayed the case k = 2.

The squares and triangles are the tensors: multilinear maps between direct products of vector

spaces. Each line represents an index i of the corresponding tensor, ranging over values from

1 to the “bond dimension” �. The boundary Hilbert space Hboundary = V
⌦Nboundary is given

by a tensor product of Nboundary individual spaces V , each of dimension �. (In principle
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∇θ𝔼x∼pθ [f(x)] = 𝔼x∼pθ [f(x)∇θln pθ(x)]

∇θ𝔼x∼pθ [f(x)]

x = gθ(z)
∇θ𝔼x∼pθ [f(x)] = 𝔼z∼𝒩(z) [∇θ f(gθ(z))]

Review: 1906.10652

Optimization: Monte Carlo Gradient Estimators



Monte Carlo Gradient Estimation in Machine Learning

classes, gradients-of-measure or gradients-of-paths. We derived the score-function estimator and the
measure-valued gradient estimator as instances of gradients of measure, both of which exploit the
measure in the stochastic objective to derive the gradient. And we derived the pathwise estimator
that uses knowledge of the sampling path to obtain the gradient. All these methods benefit from
variance reduction techniques and we reviewed four approaches for variance reduction we might
consider in practice. We further explored the use of these estimators through a set of case studies,
and explored some of the other tools for gradient estimation that exist beyond the three principal
estimators.

10.1 Guidance in Choosing Gradient Estimators

With so many competing approaches, we o↵er our rules of thumb in choosing an estimator, which
follow the intuition we developed throughout the paper:

• If our estimation problem involves continuous functions and measures that are continuous
in the domain, then using the pathwise estimator is a good default. It is relatively easy to
implement and a default implementation, one without other variance reduction, will typically
have variance that is low enough so as not to interfere with the optimisation.

• If the cost function is not di↵erentiable or a black-box function then the score-function or the
measure-valued gradients are available. If the number of parameters is low, then the measure-
valued gradient will typically have lower variance and would be preferred. But if we have a
high-dimensional parameter set, then the score function estimator should be used.

• If we have no control over the number of times we can evaluate a black-box cost function,
e↵ectively only allowing a single evaluation of it, then the score function is the only estimator
of the three we reviewed that is applicable.

• The score function estimator should, by default, always be implemented with at least a basic
variance reduction. The simplest option is to use a baseline control variate estimated with a
running average of the cost value.

• When using the score-function estimator, some attention should be paid to the dynamic range
of the cost function and its variance, and to find ways to keep its value bounded within a
reasonable range, e.g., transforming the cost so that it is zero mean, or using a baseline.

• For all estimators, track the variance of the gradients if possible and address high variance by
using a larger number of samples from the measure, decreasing the learning rate, or clipping
the gradient values. It may also be useful to restrict the range of some parameters to avoid
extreme values, e.g., by clipping them to a desired interval.

• The measure-valued gradient should be used with some coupling method for variance reduc-
tion. Coupling strategies that exploit relationships between the positive and negative compo-
nents of the density decomposition, and which have shared sampling paths, are known for the
commonly-used distributions.

• If we have several unbiased gradient estimators, a convex combination of them might have
lower variance than any of the individual estimators.

• If the measure is discrete on its domain then the score-function or measure-valued gradient
are available. The choice will again depend on the dimensionality of the parameter space.

• In all cases, we strongly recommend having a broad set of tests to verify the unbiasedness of
the gradient estimator when implemented.
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exp

cos

Figure 3: Variance of the stochastic estimates of r✓EN (x|µ,�2) [f(x; k)] for µ = � = 1 as a function
of k. Top: f(x; k) = exp(�kx

2), bottom: f(x; k) = cos kx. Left: ✓ = µ; right: ✓ = �.
The graphs in the bottom row show the function (solid) and its gradient (dashed): for
k 2 {0.1, 1, 10} for the exponential function, and k 2 {0.5, 1.58, 5.} for the cosine function.

Figures 2 and 3 also demonstrate the importance of variance reduction. The score function estimator
is commonly used with a control variate, a way to reduce the variance of the gradient that we explore
further in Section 7. We see a large decrease in variance by employing this technique. The variance
of the measure-valued derivative estimator in these plots is also shown with a form of variance
reduction (known as coupling), and for these simple cost functions, there are regimes of the function
that allow corrections that drive the variance to zero; we can see this where the kink in the plot for
the variance of the mean-gradient for the cosine cost function.

From this initial exploration, we find that there are several criteria to be judged when choosing
an unbiased gradient estimator: computational cost, implications on the use of di↵erentiable and
non-di↵erentiable cost functions, the change in behaviour as the cost itself changes (e.g., during
learning), and the availability of e↵ective variance reduction techniques to achieve low variance. We
will revisit these figures again in subsequent sections as we develop the precise description of these
methods. We will assess each estimator based on these criteria, working towards building a deeper
understanding of them and their implications for theory and practice.
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where the indicator 1y<ybest is one if the condition is met, and zero otherwise. There are
many such objectives, in areas such as Bayesian optimisation, active learning and bandits
(Shahriari et al., 2016; Wilson et al., 2018), all of which involve computing the gradient of an
expectation of a loss function, with wide use in computer graphics, model architecture search,
automatic machine learning, and treatment design; again highlighting the central role that
general-purpose gradient estimators play in modern applications.

While these five areas are entire fields of their own, they are also important problems for which
there is ongoing e↵ort throughout machine learning. There are also many other problems where
the need for computing stochastic gradients appears, including systems modelling using stochastic
di↵erential equations, parameter learning of generative models in algorithms such as variational
autoencoders, generative adversarial networks and generative stochastic networks (Rezende et al.
(2014); Kingma and Welling (2014b); Goodfellow et al. (2014); Bengio et al. (2014)), in bandits
and online learning (Hu et al., 2016), in econometrics and simulation-based estimation (Gouriéroux
and Monfort, 1996), and in instrumental-variables estimation and counter-factual reasoning (Hart-
ford et al., 2016). An ability to compute complicated gradients gives us the confidence to tackle
increasingly more complicated and interesting problems.

3. Intuitive Analysis of Gradient Estimators

The structure of the sensitivity analysis problem r✓Ep(x;✓) [f(x)] (2) directly suggests that gradients
can be computed in two ways:

Derivatives of Measure. The gradient can be computed by di↵erentiation of the measure p(x;✓).
Gradient estimators in this class include the score function estimator (Section 4) and the
measure-valued gradient (Section 6).

Derivatives of Paths. The gradient can be computed by di↵erentiation of the cost f(x), which
encodes the pathway from parameters ✓, through the random variable x, to the cost value.
In this class of estimators, we will find the pathwise gradient (Section 5), harmonic gradient
estimators and finite di↵erences (Section 9.5), and Malliavin-weighted estimators (Section 9.7).

We focus our attention on three classes of gradient estimators: the score function, pathwise and
measure-valued gradient estimators. All three estimators satisfy two desirable properties that we
identified previously, they are consistent and unbiased ; but they di↵er in their variance behaviour
and in their computational cost. Before expanding on the mathematical descriptions of these three
gradient estimators, we compare their performance in simplified problems to develop an intuitive
view of the di↵erences between these methods with regards to performance, computational cost,
di↵erentiability, and variability of the cost function.

Consider the stochastic gradient problem (2) that uses Gaussian measures for three simple families
of cost functions, quadratics, exponentials and cosines:

⌘ = r✓

Z
N (x|µ, �

2)f(x; k)dx; ✓ 2 {µ, �}; f 2 {(x � k)2, exp(�kx
2), cos(kx)}. (10)

We are interested in estimates of the gradient (10) with respect to the mean µ and the standard
deviation � of the Gaussian distribution. The cost functions vary with a parameter k, which allows
us to explore how changes in the cost a↵ect the gradient. In the graphs that follow, we use numerical
integration to compute the variance of these gradients. To reproduce these graphs, see the note on
code in the introduction.
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Continuous normalizing flows

X = Z + εv

dX
dt

= v d ln p(X, t)
dt

= − ∇ ⋅ v

ln p(X) − ln 𝒩(Z) = − ln det (1 + ε
∂v
∂Z )

ln p(X) = ln 𝒩(Z) − ln det ( ∂X
∂Z )

Consider infinitesimal change-of-variables

ε → 0

Chen et al 1806.07366

t = 0 t = 1



Fluid physics behind flows

∂p(X, t)
∂t

+ ∇ ⋅ [p(X, t)v] = 0

Zhang, E, LW 1809.10188 
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Xt

Chen et al, 1806.07366

Harbor el al 1705.03341 
Lu et al 1710.10121,  
E Commun. Math. Stat 17’…



Neural Ordinary Differential Equations

Chen et al, 1806.07366

Residual network ODE integration

Harbor el al 1705.03341 
Lu et al 1710.10121,  
E Commun. Math. Stat 17’…

Xt+1 = Xt + v(Xt) dX/dt = v(X)





Continuity equation

Fokker-Planck equation
∂p(X, t)

∂t
+ ∇ ⋅ [p(X, t)f]− ∇2p(X, t) = 0

∂p(X, t)
∂t

+ ∇ ⋅ [p(X, t)v] = 0

From flow to diffusion model

Vincent 2011, Sohl-Dickstein et al, 1503.03585, Song et al, 1907.05600 Ho et al, 2006.11239…



Figure 4: Symmetry, substructure, and shape conditioning enable geometric molecular pro-
gramming. a, Conditioning on arbitrary symmetry groups is possible by symmetrizing gradient,
noise, and initialization through the sampling process (Appendix L). We show how cyclic Cn, di-
hedral Dn, tetrahedral T , octahedral O, and icosahedral I symmetries can produce a wide variety
of possible homomeric complexes. The righmost protein complex contains 60 subunits and 96,000
total residues. b, Conditioning on partial substructure (monochrome) enables protein “infilling” or
“outfilling”. Top two rows illustrate regeneration (color) of half of a protein (enzyme DHFR, first
row) or CDR loops of an antibody (second row); Appendix K. Next three rows show conditioning
on a pre-defined motif; order and matching location of motif segments is not pre-specified here. c,
Lastly, it is possible to condition on arbitrary volumetric shapes by using gradients derived from
Optimal Transport (Appendix L). We test the ability of Chroma to solve for backbone configura-
tions subject to the complex geometries of the Latin alphabet and numerals.

9

https://generatebiomedicines.com/chroma
Ingraham et al, Chroma, Nature 2023 Abramson et al, AlphaFold3, Nature 2024

Template, MSA, …

Diffusion models for protein structure 
prediction and design

https://deepmind.google/technologies/alphafold/



Continuity equation

Fokker-Planck equation

∂p(X, t)
∂t

+ ∇ ⋅ [p(X, t)v] = 0

From flow to diffusion model, and back

∂p(X, t)
∂t

+ ∇ ⋅ [p(X, t)(f− ∇ln p(X, t))] = 0

Maoutsa et al, 2006.00702, Song et al, 2011.13456 
Liu et al 2209.03003, Albergo et al, 2209.15571, Lipman et al, 2210.02747



A tale of three equations

https://twitter.com/gabrielpeyre/status/1744962274018894292

随机微分⽅程 
Diffusion model

常微分⽅程 
Flow model

偏微分⽅程 
Fokker-Planck



https://twitter.com/michael_galkin/status/1711845455817261409



Demo: bounding free energy of classical Coulomb gas 

Z = 𝔼x∼q(x) [e−βE(x)−ln q(x)]

Base density 
Gaussian samples

Target density 
Monte Carlo samples

ℒ = 𝔼t∼𝒰(0,1)𝔼x0∼𝒩(0,I)𝔼x1∼exp(−βE)/Z x1 − x0 − v(x, t)
2

Interpolate samples to  
estimate free energy  

differences

ln q(x) = ln 𝒩(0,I) − ∫
1

0
∇ ⋅ vdt

https://colab.research.google.com/drive/1t-Vk37Axxp040B7uXFUNlk-zeCC2lcX3?usp=sharing
Jarzynski PRE ’02, see also likelihood-based training of flows Wirnsberger et al, 2002.04913, 2111.08696



Tensor  
Networks

Quantum  
Circuits

G 0
21~ ivn!5ivn1m2t2G~ ivn!. (23)

The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51

`

(
i1•••in

1
n!

h i1
•••h in

^Si1
•••Sin

&c
~o ! (27)

For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.

21A. Georges et al.: Dynamical mean-field theory of . . .

Rev. Mod. Phys., Vol. 68, No. 1, January 1996
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Goodfellow,  
NIPS tutorial, 1701.00160

Generative models and their physics genes 

+Diffusion models

Deep Unsupervised Learning using Nonequilibrium Thermodynamics

t = 0 t = T
2 t = T

q
�
x(0···T )

�

p
�
x(0···T )

�

fµ
�
x(t)

, t
�
� x(t)

Figure 1. The proposed modeling framework trained on 2-d swiss roll data. The top row shows time slices from the forward trajectory
q
⇣
x(0···T )

⌘
. The data distribution (left) undergoes Gaussian diffusion, which gradually transforms it into an identity-covariance Gaus-

sian (right). The middle row shows the corresponding time slices from the trained reverse trajectory p
⇣
x(0···T )

⌘
. An identity-covariance

Gaussian (right) undergoes a Gaussian diffusion process with learned mean and covariance functions, and is gradually transformed back
into the data distribution (left). The bottom row shows the drift term, fµ

⇣
x(t), t

⌘
� x(t), for the same reverse diffusion process.

nealed Importance Sampling (AIS) (Neal, 2001), which
uses a Markov chain which slowly converts one distribu-
tion into another to compute a ratio of normalizing con-
stants. In (Burda et al., 2014) it is shown that AIS can also
be performed using the reverse rather than forward trajec-
tory. Langevin dynamics (Langevin, 1908), which are the
stochastic realization of the Fokker-Planck equation, show
how to define a Gaussian diffusion process which has any
target distribution as its equilibrium. In (Suykens & Vande-
walle, 1995) the Fokker-Planck equation is used to perform
stochastic optimization. Finally, the Kolmogorov forward
and backward equations (Feller, 1949) show that for many
forward diffusion processes, the reverse diffusion processes
can be described using the same functional form.

2. Algorithm
Our goal is to define a forward (or inference) diffusion pro-
cess which converts any complex data distribution into a
simple, tractable, distribution, and then learn a finite-time
reversal of this diffusion process which defines our gener-
ative model distribution (See Figure 1). We first describe
the forward, inference diffusion process. We then show

how the reverse, generative diffusion process can be trained
and used to evaluate probabilities. We also derive entropy
bounds for the reverse process, and show how the learned
distributions can be multiplied by any second distribution
(e.g. as would be done to compute a posterior when in-
painting or denoising an image).

2.1. Forward Trajectory

We label the data distribution q
�
x(0)

�
. The data distribu-

tion is gradually converted into a well behaved (analyti-
cally tractable) distribution ⇡ (y) by repeated application
of a Markov diffusion kernel T⇡ (y|y0;�) for ⇡ (y), where
� is the diffusion rate,

⇡ (y) =

Z
dy0

T⇡ (y|y0;�)⇡ (y0) (1)

q

⇣
x(t)|x(t�1)

⌘
= T⇡

⇣
x(t)|x(t�1);�t

⌘
. (2)

p(X)

Han et al, PRX ‘18 Liu et al PRA ’18Autoregressive 
model

Flow model 

Generative models and their physics genes



Which is the best ?

p(X) = p(x1)p(x2 |x1)p(x3 |x1, x2)⋯ p(X) = 𝒩(Z) det ( ∂Z
∂X )

Z

X

N (Z)

p
(X

)

“… the murderer is ___”

p(_ | . . . )

Discrete or continuous sequantial data Continuous structured data

Autoregressive model Flow model



https://nonint.com/2023/06/10/the-it-in-ai-models-is-the-dataset/

Which is the best ?



https://staff.fnwi.uva.nl/m.welling/wp-content/uploads/Model-versus-Data-AI-1.pdfhttp://www.incompleteideas.net/IncIdeas/BitterLesson.html

more physics and symmetriesmore data and compute

How much inductive bias?



Molecule representations and inductive biases

Language model Equivariant neural 
network

SMLIES or XYZ/CIF/PDB file Atom coordinates

more physics and symmetriesmore data and compute

HEADER    CAFFEINE
COMPND    CAFFEINE
AUTHOR    GENERATED BY ChatGPT

ATOM      1  C   LIG A   1       0.000  0.000  0.000
ATOM      2  N   LIG A   1       1.289  0.000  0.000
ATOM      3  C   LIG A   1       1.463  1.192  0.000
ATOM      4  N   LIG A   1       2.644  1.192  0.000
ATOM      5  C   LIG A   1       2.818  2.384  0.000
ATOM      6  N   LIG A   1       4.089  2.384  0.000
ATOM      7  C   LIG A   1       4.263  3.576  0.000

             .
             .
             .



Abramson et al, AlphaFold3, Nature 2024

[35]  Swallowing the Bitter Pill: Simplified Scalable Conformer Generation, 2311.17932 

Template, MSA, …

How much inductive bias?



Autoregressive language models are fast thinkers

Can they reason ?



Fast thinkers rely on good intuitions

System 1 thinking in physics: 
getting answers quickly without lengthy calculations 

“Never never calculate unless you already know the answer! ”—John Wheeler



http://ai.ruc.edu.cn/newslist/newsdetail/20240326001.htmlhttps://openai.com/index/sora/

“What I can not create, I do not understand” 
—Richard Feynman

Do they understand physics?



Data-driven generation AlphaFold3 Physics-based molecular dynamics

Fold by intuition vs fold by equation
Xt+1 = Xt + ηt

2 s(Xt, t) + ηtϵBoth integrate Langevin dyanmics

The diffusion model may generate right 
conformations via unphysical pathways

Physical force fields may face difficulties 
in sampling rough energy landscapes

Shaw et al, Science 2010Abramson et al, Nature 2024

simulations to ~1 ms of simulated biological
time. [The longest previously published all-atom
MD simulation of a protein, at 10 ms, required
more than 3 months of supercomputer time
(10).] This has limited the usefulness of MD, as
many biological processes involve conforma-
tional changes that take place on time scales
between 10 ms and 1 ms.

To access such time scales, we designed and
constructed a special-purpose machine, called
Anton (11), that greatly accelerates the execution
of such simulations, producing continuous trajec-
tories as much as 1 ms in length. This has allowed
new insight into two fundamental processes in
protein dynamics: protein folding and the inter-
conversion among distinct structural states of a
folded protein.

Specifically, we have been able to formulate a
detailed description of the folding of a WW do-
main (12) as well as the folded-state dynamics
of bovine pancreatic trypsin inhibitor (BPTI), a
workhorse in the study of protein dynamics [and
the subject of the first protein MD simulation
(13) and of pioneering computational studies of
protein folding (14)]. Our choice of biological
systems was motivated in part by the fact that a
considerable amount of experimental data is
available for both of these proteins, providing
us with various ways to test the reliability of our
simulations.

Folding of a WW domain. WWdomains are
small, independently folding protein domains
that bind to proline-rich sequences. The topology
of WW domains is characterized by two b hair-
pins, which form a three-stranded b sheet (15).
Mutational analyses of the folding of WW do-
mains show that the rate-limiting step in the fold-
ing reaction involves the formation of the first
hairpin (16–18). This information facilitated the
original design of the fastest-foldingWW domain
reported to date, FiP35 (12), which folds in 14 ms.

FiP35 has several features that make it at-
tractive as a model system for use in computa-
tional studies of protein folding. A great deal
of experimental data is available for this system
(12, 16, 17), and previous attempts to charac-
terize its folding mechanism through explicit-
solvent simulations have been largely unsuccessful
(10, 19). It has been suggested that WW do-
mains such as FiP35 fold through multiple dis-
tinct routes that differ in the order of formation of
the individual hairpins (20–22), but this has not
been conclusively demonstrated. It has also been
speculated that the mutations involved in the
design of FiP35may have shifted the rate-limiting
step relative to that of the Pin1 WW domain,
which formed the basis for its design. Finally, it
has been suggested (12) that the fast folding of
FiP35 may be close to the downhill regime, with
only a small (<3kBT) free-energy barrier. Many
of the unresolved questions surrounding the fold-
ing of FiP35 raise issues central to the process of
protein folding more generally, and we believed
they might be amenable to investigation using
very long atomistic simulations.

Folding FiP35 and villin to experimental
resolution using the same force field. We first
ran a simulation at 337 K, a temperature at which
FiP35 should be predominantly folded. The pro-
tein was initially configured in a fully extended
state and was observed to fold to a stable confor-
mation with a backbone root-mean-squared de-
viation (RMSD) of ~1Å from the crystal structure
(15) (Fig. 1B). A previous attempt to fold FiP35
computationally, using a 10-ms explicit solvent
simulation (10), did not converge to the native
state, and subsequent work (19) provided evi-
dence that this was attributable to deficiencies in
the force field. Our successful folding simulation
was based on a modified version of the Amber
ff99SB force field (23).

One potential concern in simulating the fold-
ing of an all-b protein is the possibility that the
force field used might tend to overstabilize b
sheets, thus “assisting” the folding process in a
nonphysical manner. The force field we used,
however, also folded a variant of the villin
headpiece C-terminal fragment, a small all-a
protein (24), to within an RMSD of ~1 Å from
the crystal structure. (These results cannot be
taken as evidence that the same force field would
necessarily succeed in folding other proteins.)

Reversible folding and unfolding in an
equilibrium simulation of FiP35. In the hope of
observing a number of folding and unfolding
events under equilibrium conditions, we then ran
two independent 100-msMD simulations of FiP35
at a temperature (395 K) approximating the pro-
tein’s in silico melting temperature. [The in silico
melting temperature was estimated using a replica
exchange metadynamics simulation (25) and is
~40 K higher than the experimental melting tem-
perature.] In each of the two equilibrium simu-
lations, FiP35 underwent multiple folding and
unfolding transitions, for a total of 15 events in the
two simulations (Fig. 2A). We found the folding
time, as calculated from the average waiting time
in the unfolded state, to be 10 T 3 ms, in relatively
close agreement with the experimental folding
time [14 ms (12)]. The population of the folded
state in the simulations was 60%.

In our simulations, a well-defined sequence
of events leads from the disordered, unfolded

state to the native state: In all folding transi-
tions, formation of the tip of the first hairpin is
followed by formation of the entire first hair-
pin, then by formation of the second hairpin,
and finally by consolidation of the hydrophobic
core (Fig. 2B, top). Unfolding transitions follow
the reverse pattern. Thus, the folding mecha-
nism of FiP35 appears to be dominated by a
single pathway, with any flux through alternative
pathways being small. This is in contrast with
recent studies of WW domains (20–22)—using
simulations shorter than the folding time—which
found structurally heterogeneous dynamics with
multiple parallel pathways connecting folded
and unfolded states.

To explain why FiP35 folds along a single,
dominant route, we performed reversible folding
simulations of peptides corresponding to the two
hairpins of FiP35. Both the first and second hair-
pin, in isolation, fold to the structure found in the
full WW domain, with similar time constants
(1.2 T 0.1 ms and 0.86 T 0.06 ms for hairpins 1 and
2, respectively). The two hairpins, however, dif-
fer substantially in their stabilities, with the pop-
ulation of the folded state being 25% and 4% for
the first and second hairpins, respectively. Thus,
the order in which the individual hairpins form
during folding of the full WW domain mirrors
their intrinsic thermodynamic stabilities, with the
slower but more stable hairpin 1 forming first.
We suspect that the alternative pathway in which
the second hairpin forms first may not be sub-
stantially utilized because of the relatively large
difference in stability between the two hairpins
(~1.5 kcal mol−1). Indeed, experiments have
shown that variations in substructure stabilities
can cause substantial shifts in folding pathways
(26, 27), as have computational studies in the
context of the diffusion-collision model for pro-
tein folding (28).

Our simulations show that both hairpins also
form with similar rate constants in the context of
the fullWWdomain. The first hairpin forms with
a time constant of 5 T 1 ms, slower than in isola-
tion by a factor of 4; such a slowdown is greater
than expected for a simple hydrodynamic drag.
To determine its origin, we performed simula-
tions in which we systematically added residues

Fig. 1. Folding proteins
at x-ray resolution, show-
ing comparison of x-ray
structures (blue) (15, 24)
and last frame of MD
simulation (red): (A) sim-
ulation of villin at 300 K,
(B) simulation of FiP35 at
337 K. Simulations were
initiated from completely
extended structures. Villin
and FiP35 folded to their
native states after 68 ms
and 38 ms, respectively,
and simulations were continued for an additional 20 ms after the folding event to verify the stability of the
native fold.
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⽣成模型四问
哪种模型好？ 要多少先验？

懂不懂物理？

不是真的懂，但未必是坏事

⼤数据：⽆所谓 
⼩数据：看模态 抓主要⽭盾

能不能推理？

哪怕不能，“直觉”也很可贵



What can generative models do ?

ln p(X)

Likelihood estimation

X ∼ p(X) or p(X |y)

(Un)conditional sampling

Anomaly detention

De novo design 
Text-to-image 

Question answering

Appreciation Generation

Generative models compress the training data to extract  
language/image/physics/chemistry intuitions



What is next? 

Generative AI for It

“It from Bit”, John Wheeler, 1989  
in Informaiton, physics, quantum: the search for links



Chemical  
space X

Control  
variable y

Generative AI for matter engineering

Inverse molecular design using machine learning, Sanchez-Lengeling & Aspuru-Guzik, Science ’18 
Inverse design in search of materials with target functionalities, Zunger, Nature Reviews Chemistry ‘18

can deal practically with approximationmethods
for the graph isomorphism problem.
Additionally, improved sequence generation

models are possible with the ability to read and
write to memory (69). These approaches demon-
strate better ability for learning long- and short-
termpatterns.Morework is neededonRiemannian
optimization methods that exploit the geometry
of latent space. Structured architectures such as
multilevel VAE (85) offer newways of organizing
latent space and are promising research direc-
tions. New approaches also lie in inverse RL,
geared toward learning a reward or loss function
(86). Research in this direction will allow for the
discovery of reward functions associated with
different materials discovery tasks.

Outlook

Inverse design is an important component of the
complex framework required to designmatter at
an accelerated pace. The tools for inverse design,
especially those stemming from the field of ma-
chine learning, have shown rapid progress in
the last several years and have allowed chemical
space to be framed into probabilistic data-driven
models. Generativemodels produce large numbers
of candidate molecules, and the physical realiza-
tions of these candidates will require automated
high-throughput efforts to validate the genera-
tive approach. The community has yet has to
show more than a few examples of successful

closed-loop approaches for the design of matter
(87). The blurring of the barriers between theory
and experiment will lead to AI-enabled auto-
mated laboratories (88, 89).
The combination of inverse design tools with

active learning approaches such as Bayesian
optimization (90, 91) can enable a model that
adapts as it explores chemical space, which
allows for expanding a model in regions of
high uncertainty and enabling the discovery
of regions of molecular space with desirable
properties as a function of composition. Active
learning in the space of objective functions could
lead to a better understanding of the best rewards
to seek while carrying out machine learning.
As seen, central to machine learning meth-

odologies is the representation of molecules;
representations that encode the relevant physics
will tend to generalize better. Despite consider-
able progress, much work remains. Graph and
hierarchical representations of molecules are an
area requiring further study.
The integration of machine learning as a new

pillar of knowledge in the curricula of chemical,
biochemical, medicinal, and materials sciences
will allow for a more rapid adoption of themeth-
odologies summarized in this work.
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Fig. 4. Schematic representation of several architectures found in
generative models. RNNs are used for sequence generation. The VAE
shows the semi-supervised variant, jointly trained by molecules (x) and
properties (y). Latent space is denoted with Z, and latent vectors with z.
In the GAN setting, the noise eventually acquires structure via the

adversarial training. Reinforcement learning (RL) shows a policy
gradient with MTCS in the task of SMILES completion with
arbitrary rewards. Shown in the lower right are hybrid architectures
such as AAE (adversarial autoencoders) and ORGAN, which represents
GAN and RL.
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can deal practically with approximationmethods
for the graph isomorphism problem.
Additionally, improved sequence generation

models are possible with the ability to read and
write to memory (69). These approaches demon-
strate better ability for learning long- and short-
termpatterns.Morework is neededonRiemannian
optimization methods that exploit the geometry
of latent space. Structured architectures such as
multilevel VAE (85) offer newways of organizing
latent space and are promising research direc-
tions. New approaches also lie in inverse RL,
geared toward learning a reward or loss function
(86). Research in this direction will allow for the
discovery of reward functions associated with
different materials discovery tasks.

Outlook

Inverse design is an important component of the
complex framework required to designmatter at
an accelerated pace. The tools for inverse design,
especially those stemming from the field of ma-
chine learning, have shown rapid progress in
the last several years and have allowed chemical
space to be framed into probabilistic data-driven
models. Generativemodels produce large numbers
of candidate molecules, and the physical realiza-
tions of these candidates will require automated
high-throughput efforts to validate the genera-
tive approach. The community has yet has to
show more than a few examples of successful

closed-loop approaches for the design of matter
(87). The blurring of the barriers between theory
and experiment will lead to AI-enabled auto-
mated laboratories (88, 89).
The combination of inverse design tools with

active learning approaches such as Bayesian
optimization (90, 91) can enable a model that
adapts as it explores chemical space, which
allows for expanding a model in regions of
high uncertainty and enabling the discovery
of regions of molecular space with desirable
properties as a function of composition. Active
learning in the space of objective functions could
lead to a better understanding of the best rewards
to seek while carrying out machine learning.
As seen, central to machine learning meth-

odologies is the representation of molecules;
representations that encode the relevant physics
will tend to generalize better. Despite consider-
able progress, much work remains. Graph and
hierarchical representations of molecules are an
area requiring further study.
The integration of machine learning as a new

pillar of knowledge in the curricula of chemical,
biochemical, medicinal, and materials sciences
will allow for a more rapid adoption of themeth-
odologies summarized in this work.
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“an image of beautiful crystals in 16:9” 
pixels ∼ p(pixels | texts)
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Large language model Energy-based structure prediction
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small forces acting on one side of the salt cube can result in a situation, in which ions with 
identical signs are being directly adjacent. In order to realize this, the displacement has to 
be only one ion diameter (see . Fig.  7.20). Since charges with identical sign repel each 
other, a crack forms at this point and finally the cube falls apart. In mineralogy, the term 
cleavage describes the property how easily a crystal can be cleaved. It also specifies in which 

b

a

       . Fig. 7.18 The crystal 
structure of sodium 
chloride (space group 
Fm m3 ),  here shown as a 

2 × 2 × 2 supercell, in 
which two unit cells are 
shown in each of the 
directions x, y, and z. A 
single unit cell is marked 
in blue in the lower right 
corner. The octahedrally 
surrounded sodium ions 
(at the bottom left) and 
chloride ions (at the top 
right) are also highlighted; 
sodium is white, chloride 
green

       . Fig. 7.19 Very large, well-formed, intergrown halite cubes (ca. 
6.7 × 1.9 × 1.7 cm) (Rob Lavinsky, 7 iRocks. com, CC BY-SA-3.0)

7.3 · Rock Salt: A Simply Complicated Structure and the Miracle of a Site …
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Antunes et al, 2307.04340 
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The biggest lesson that can be read from 70 years of AI research is that 
general methods that leverage computation are ultimately the most effective 

more physics and symmetriesmore data and compute

—Rich Sutton 2019



We have much less crystal data

Data, compute, and parameters need to scale simultaneously Kaplan et al, 2001.08361
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Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute2 used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.

Performance depends strongly on scale, weakly on model shape: Model performance depends most
strongly on scale, which consists of three factors: the number of model parameters N (excluding embed-
dings), the size of the dataset D, and the amount of compute C used for training. Within reasonable limits,
performance depends very weakly on other architectural hyperparameters such as depth vs. width. (Section
3)

Smooth power laws: Performance has a power-law relationship with each of the three scale factors
N,D,C when not bottlenecked by the other two, with trends spanning more than six orders of magnitude
(see Figure 1). We observe no signs of deviation from these trends on the upper end, though performance
must flatten out eventually before reaching zero loss. (Section 3)

Universality of overfitting: Performance improves predictably as long as we scale up N and D in tandem,
but enters a regime of diminishing returns if either N or D is held fixed while the other increases. The
performance penalty depends predictably on the ratio N0.74/D, meaning that every time we increase the
model size 8x, we only need to increase the data by roughly 5x to avoid a penalty. (Section 4)

Universality of training: Training curves follow predictable power-laws whose parameters are roughly
independent of the model size. By extrapolating the early part of a training curve, we can roughly predict the
loss that would be achieved if we trained for much longer. (Section 5)

Transfer improves with test performance: When we evaluate models on text with a different distribution
than they were trained on, the results are strongly correlated to those on the training validation set with
a roughly constant offset in the loss – in other words, transfer to a different distribution incurs a constant
penalty but otherwise improves roughly in line with performance on the training set. (Section 3.2.2)

Sample efficiency: Large models are more sample-efficient than small models, reaching the same level of
performance with fewer optimization steps (Figure 2) and using fewer data points (Figure 4).

Convergence is inefficient: When working within a fixed compute budget C but without any other restric-
tions on the model size N or available data D, we attain optimal performance by training very large models
and stopping significantly short of convergence (see Figure 3). Maximally compute-efficient training would
therefore be far more sample efficient than one might expect based on training small models to convergence,
with data requirements growing very slowly as D ⇠ C0.27 with training compute. (Section 6)

Optimal batch size: The ideal batch size for training these models is roughly a power of the loss only,
and continues to be determinable by measuring the gradient noise scale [MKAT18]; it is roughly 1-2 million
tokens at convergence for the largest models we can train. (Section 5.1)

Taken together, these results show that language modeling performance improves smoothly and predictably
as we appropriately scale up model size, data, and compute. We expect that larger language models will
perform better and be more sample efficient than current models.
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the “superhydride” compound LaH10, although only under a pressure of 170 GPa [82].
Nonetheless, this is the highest critical temperature that has been confirmed so far in a
superconducting material. LaH10 crystallizes in the space group Fm!3m (a = 5.1019(5) Å)
and has a very interesting clathrate-like structure, in which the hydrogen atoms form a
net that is identical with the net of the zeolite framework-type AST. The La atoms occupy
the Wyckoff position 4b (0, 0, 0), and the H atoms the 8c (0.25, 0.25, 0.25) and at the 32f
position (0.125, 0.375, 0.125). The atoms at the 32f position constitute the characteristic H8

cubes present in the structure, with their barycentres at the octahedral voids of the ccp
packing of the La atoms. The La atoms are surrounded by a [46612] polyhedron of 32 H
atoms. The structure of LaH10 is shown in Figure 11.10.

In addition to the renaissance taking place in the field of conventional (type I)
superconductors, however, other classes of materials are also opening up new perspec-
tives. Research is already being carried out on a completely new type of superconduc-
tors, the so-called Kagome superconductors, which, in addition to superconductivity,
exhibit other extraordinary quantum phenomena, such as time-reversal symmetry break-
ing, as recently experimentally demonstrated with the metallic compound KV3Sb5 [83].
This class of material is being considered as a hot candidate for room-temperature
superconductors.

Figure 11.10: Crystal structure of LaH10. The La
atoms, shown as green spheres, are surrounded
by 32 H atoms (represented as bonded orange
sticks) in form of [46612] polyhedra, highlighted in
translucent black.

240 11 Superconductivity

LaH10



“成语”～配位多⾯体

“语法”～固体化学规律
“同义词” ～ 可以互换的元素

融合空间群对称性的晶体语⾔模型
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Not a large language model, nor a potential energy surface
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Compress material database into transformer parameters
The model has to gain chemical intuition for such compression
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in the five materials are shown in the orbital-projected band structures 
in Fig. 2f–j. As detailed in Supplemenatry Section F, on the basis of the 
crystal structure and orbital-projected bands of these materials, we 
have constructed effective tight-binding Hamiltonians using the 
S-matrix method6 and found that they can successfully explain the 
origins of flat bands. The flat bands of other materials of similar crystal 
structures can be found in the MFBDB. In Methods, we use Ca2NCl to 
showcase the application of the S-matrix method in explaining the 
origin of flat bands.

Discussion
We have performed a high-throughput search for flat electronic bands 
near the Fermi level and for the detection of line-graph and bipartite 
sublattices from the crystal structures of stoichiometric crystalline 
materials. We have further classified the flat bands by their topology, 
DOS, length of band flatness and the types of lattice formed by the 
atoms whose orbitals contribute to the flat band. By successfully apply-
ing our algorithms to 55,206 ICSD entries, we have found that 24,052 
(43.57%) out of all the ICSD entries host at least one of the Kagome, 
pyrochlore, Lieb, bipartite or split sublattices in their crystal structures. 
This proportion is raised to 59.26% for our manually curated list of 6,338 
ICSDs (2,379 unique materials) and 73.87% for the best representative 
flat-band materials. The appearance of flat bands in materials can be, 
in large but non-exhaustive part, theoretically understood using the 
S-matrix method6, as we have exemplified in five prototypical com-
pounds. All the results obtained in this study and detailed in the Supple-
mentary Information can be accessed on the MFBDB. Our results pave 
the way for future theoretical and experimental studies on flat-band 
materials combining topology and interactions and leading to exotic 
quantum phenomena, such as magnetism, non-Fermi liquid behaviour 
and superconductivity. Such flat-band investigations are, at present, 
confined to engineered twisted moire lattices in two dimensions. 

Although the present work studies flat bands in paramagnetic band 
structures of three-dimensional materials, our methods can be adapted 
to detect flat bands in magnetic band structures, two-dimensional 
monolayer materials, phonons and photonic crystals. Furthermore, 
the further classification of FOABs will enlarge the set of flat bands 
whose centre of charge is away from the atomic positions.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41586-022-04519-1.
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Fig. 2 | Crystal and band structures of the representative flat-band 
materials. a–e, The crystal structures of KAg(CN)2 (a), which hosts an 
approximate Kagome sublattice formed by the Ag atoms (in red), Pb2Sb2O7  
(b) with Pb atoms at the Wyckoff position 16d forming a pyrochlore sublattice, 
Rb2CaH4 (c) with the H atoms at 4c (that is, the H1 atoms in yellow) and the Ca 
atoms at the 2a position forming a Lieb sublattice, Ca2NCl (d), which is stacked 
by alternating the Ca2N and Cl layers, where the Ca2N layer is identified as a 
bipartite sublattice in our algorithm, and WO3 (e) with the W and O atoms 
forming a split lattice. f–j, For each material, its band structure and the orbital 

characterization of the flat bands is plotted and analysed below its crystal 
structure. On the basis of the band structure analysis, the flat bands close to the 
Fermi level are explained by the S-matrix method in Supplemtary Section F.  
In the crystal structure plots, the SG, chemical formula and the type of 
sublattice host in the material are provided at the top of each panel. In the 
band-structure plots, the flat-band segments close to the Fermi level are 
indicated by the dashed green lines. The orbital characters of the coloured 
bands are provided at the top of each panel.
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Autoregressive sampling of a crystal
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Generating crystals via diffusion
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The large language model approach 
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the space group—Wyckoff position—
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92 Subgroups and supergroups of point and space groups

Fig. 7.3 Graph (contracted) of the translatio-

nengleiche subgroups of Pm3m. Every con-
jugacy class of maximal subgroups is marked
by one line. For example, there are three non-
conjugate subgroups of Pmmm of the type
Pmm2, namely Pmm2, Pm2m, and P2mm,
which are commonly designated by the con-
ventional setting Pmm2. These may be con-
jugate in groups of higher order; in Pm3
there is only one class of three conjugates of
Pmm2. The trivial subgroup P1 is not men-
tioned.
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Fig. 7.4 Graph (contracted) of the translatio-
nengleiche subgroups of Pbcm. The kind of
presentation is as in Fig. 7.3.
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of the point groups of Figs. 7.1 and 7.2 can be applied, since the factor group
G/T is isomorphic to the point group P . Space-group symbols replace the
point-group symbols. There are 10 cubic space-group types of the crystal class
m3m, and thus there are 10 graphs corresponding to Fig. 7.1. However, addi-
tional graphs are needed because, for example, Pbcm does not appear among
the translationengleiche subgroups of a space group of the crystal class m3m.
Figures 7.3 and 7.4 are examples of such graphs.

The translationengleiche subgroups H of a space group G are completely
listed in the subgroup tables of International Tables A (up to 2005) under I.
Since every H contains complete cosets of G/T , H can be completely char-
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Aside: autoregressive transformer for images

Figure 2. Our approach uses a convolutional VQGAN to learn a codebook of context-rich visual parts, whose composition is subsequently
modeled with an autoregressive transformer architecture. A discrete codebook provides the interface between these architectures and a
patch-based discriminator enables strong compression while retaining high perceptual quality. This method introduces the efficiency of
convolutional approaches to transformer based high resolution image synthesis.

decoded to images with a learned generator.
[72] presents the Vector Quantised Variational Autoen-

coder (VQVAE), an approach to learn discrete represen-
tations of images, and models their distribution autore-
gressively with a convolutional architecture. [61] extends
this approach to use a hierarchy of learned representations.
However, these methods still rely on convolutional density
estimation, which makes it difficult to capture long-range
interactions in high-resolution images. [8] models images
autoregressively with transformers in order to evaluate the
suitability of generative pretraining to learn image repre-
sentations for downstream tasks. Since input resolutions of
32⇥ 32 pixels are still quite computationally expensive [8],
a VQVAE is used to encode images up to a resolution of
192 ⇥ 192. In an effort to keep the learned discrete repre-
sentation as spatially invariant as possible with respect to
the pixels, a shallow VQVAE with small receptive field is
employed. In contrast, we demonstrate that a powerful first
stage, which captures as much context as possible in the
learned representation, is critical to enable efficient high-
resolution image synthesis with transformers.

3. Approach
Our goal is to exploit the highly promising learning ca-

pabilities of transformer models [74] and introduce them to
high-resolution image synthesis up to the megapixel range.
Previous work [55, 8] which applied transformers to image
generation demonstrated promising results for images up to
a size of 64 ⇥ 64 pixels but, due to the quadratically in-
creasing cost in sequence length, cannot simply be scaled
to higher resolutions.

High-resolution image synthesis requires a model that

understands the global composition of images, enabling it to
generate locally realistic as well as globally consistent pat-
terns. Therefore, instead of representing an image with pix-
els, we represent it as a composition of perceptually rich im-
age constituents from a codebook. By learning an effective
code, as described in Sec. 3.1, we can significantly reduce
the description length of compositions, which allows us to
efficiently model their global interrelations within images
with a transformer architecture as described in Sec. 3.2.
This approach, summarized in Fig. 2, is able to generate
realistic and consistent high resolution images both in an
unconditional and a conditional setting.

3.1. Learning an Effective Codebook of Image Con-
stituents for Use in Transformers

To utilize the highly expressive transformer architecture for
image synthesis, we need to express the constituents of an
image in the form of a sequence. Instead of building on indi-
vidual pixels, complexity necessitates an approach that uses
a discrete codebook of learned representations, such that
any image x 2 RH⇥W⇥3 can be represented by a spatial
collection of codebook entries zq 2 Rh⇥w⇥nz , where nz is
the dimensionality of codes. An equivalent representation
is a sequence of h · w indices which specify the respective
entries in the learned codebook. To effectively learn such
a discrete spatial codebook, we propose to directly incor-
porate the inductive biases of CNNs and incorporate ideas
from neural discrete representation learning [72]. First, we
learn a convolutional model consisting of an encoder E and
a decoder G, such that taken together, they learn to repre-
sent images with codes from a learned, discrete codebook
Z = {zk}Kk=1 ⇢ Rnz (see Fig. 2 for an overview). More

3

learned codebook, see also Tian et al, 2404.02905

CrystalFormer leverages Nature’s codebook: the Wyckoff position table  



Relationship with other structure types

ReO3 (Strukturbericht type D09)
The prototypical compound ReO3 is closely related to the ideal cubic perovskite struc-
ture of SrTiO3. Instead of the corner-shared TiO6 octahedra in SrTiO3, ReO6 corner-
sharing octahedra are present that build a primitive cubic array; the oxygen atoms
are at the unit cell edge bisectors and are linearly coordinated by two Re atoms. The
only difference is that the centre of the cell, surrounded by eight ReO6 octahedra, is
unoccupied, see Figure 5.37, left. Therefore, as a kind of didactic mnemonic, one could
formulate: “ReO3 = SrTiO3 – Sr”. ReO3 crystallizes in the cubic space group Pm!3m
(no. 221) with one formula per unit cell. ReO3 is a rather unusual oxide compound
with respect to two aspects: (i) it is the only stable trioxide compound of the group 7
elements (Mn, Tc, Re), (ii) it has a very high electrical conductivity (almost as high as
that of Cu) and – typically for a metallic behaviour – the conductivity decreases with
increasing temperature. The formation of the conductivity band results from the over-
lap between the Re 5d (t2g) and O 2p (px/y) orbitals. The metallic-like properties of ReO3

are also reflected in the metallic lustre of the (deep red) crystals it forms.
Compounds that crystallize in the ReO3 structure type are:

– ReO3, UO3, AlF3, ScF3, TiOF2, NbF3, TaF3, TaO2F, MoF3, Na3N, and Cu3N, whereas
the latter two represent compounds with an anti-ReO3 structure.

Some hydroxides of trivalent metals, e.g., In(OH)3 and Sc(OH)3, form structures that
are closely related to the structure of ReO3. As in ReO3, corner-linked metal-oxygen
octahedra are present, but in contrast to those in ReO3, they are strongly tilted with

Figure 5.36: Crystal structure of the ordered double rock salt-type perovskite compound Sr2FeMoO6.
Sr, green; Fe, blue; Mo, orange; O, red.

5.3 Compounds based on a cubic closest packing 99
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Table S17: Comparison of different sentences generated by (top row) unconditioned GPT-2 and
(other rows) our approach using GPT-2 with the same bags-of-words with different strength factors,
while using the same prefix: "The potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potato".

[–] The potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potato, or potato chip, is one of the best-selling snacks in the world!\n \n It comes in a variety of
colors, is gluten-free (except for gluten-free chips), low in fat and saturated fat, and can be made in just 30
minutes, using only 6 simple ingredients. It’s also easy to make, and can be stored in its own tin. \n \n
The potato chip, however, may not be for everyone. If you are trying to lose weight, it. . .
[Science; 0.0001] The potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potato, a tuber of the carrot family (Cotus russulus), is an edible plant that is native
to Central and South America, Asia, Europe and the Mediterranean. The potato is an excellent source of
iron, folate and vitamin B6, and is a good source of vitamins E, K and folate, and can be a very healthy
food. In addition, a potato has a rich, rich nutritional profile. It is high in protein, potassium, magnesium,
zinc,. . .
[Science; 0.001] The potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potato, a tuber of the carrot family (Cotus russulus), is an edible plant that is widely
cultivated as a food and a medicinal plant. Potato is widely used to make various products. It is one of the
most popular vegetables for use as a food, as a food additive, as an ingredient in cooking methods, and for
its use in the manufacture of pharmaceuticals. The most commonly consumed portion is a large potato. In
China, there are about 30 varieties of potato. It is. . .
[Science; 0.005] The potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potato is an ancient member of the green family which, as its name suggests, is
green and edible. It is native to the Middle East and parts of South Asia. It is an important crop in many
parts of the world. The potato, a member of the potato family, has been domesticated for thousands of
years. It can be eaten raw and cooked in its skins; it is also used as a starch and is a great source of energy
and fiber in many diets and in many countries. . .
[Science; 0.01] The potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potato was once thought to have no health problems and has been promoted as a
nutritious food source since the mid-1800s, but recent reports indicate that it has many harmful health
issues. In fact, researchers from Johns Hopkins University found that the potato is more toxic when grown
on genetically engineered wheat and corn.\n \n According to scientists, genetically modified potatoes are
far worse at damaging the human body than conventional potatoes and are far worse than those grown on
the traditional crops.\n \n The study also revealed. . .
[Science; 0.02] The potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potato plant, a member of the onion family.\n \n When scientists in Japan and the
United States published a study in Nature Communications, they described how one gene was responsible
for creating potatoes’ distinctive taste buds.\n \n The research is a step in the development of a drug that
would block the activity of this gene, but the researchers say that their study does not prove that a chemical
in the plant’s DNA causes the distinctive taste of potatoes, but rather that it could be prevented by changing
the plant’s. . .
[Science; 0.03] The potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potato, a staple of most diets, seems to be the most popular vegetable among
researchers. The research has been published and peer-reviewed.\n \n The potato has a unique ability.
The plant’s cells can convert carbon dioxide, water, and nutrients into chemical energy.\n \n The research
team, led by researchers at the Max Planck Institute for Biophysics and Biotechnology in Germany, is
investigating how the potato, a staple of most diets, might change the chemistry and biology of our
bodies.. . .
[Science; 0.04] The potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potato has been around for thousands of years, but only in recent decades have
scientists discovered ways it can be transformed into other foodstuffs. Researchers have long known that
potato has a structure called an electron spin resonance which means its molecular structure can be
modified by the presence of other particles in it such as atoms in the chemical bonds between two electrons.
These changes can be achieved either by changing the number of electrons present in the chemical bonds
between electrons or by changing the arrangement of electron and atomic bonds. In both. . .
[Science; 0.05] The potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potato chip is a delicious treat that can be enjoyed in the laboratory experiment, but is
it safe for humans? \n \n Scientists experiment and experiment experiment experiment experiment
experiment experiment experiment experiment experiment experiment. . . . . .
[Science; 0.1] The potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potatoThe potato, which scientists at the lab experiment experiment experiment experiment
experiment experiment experiment experiment experiment experiment experiment experiment experiment
experiment experiment experiment experiment experiment experiment experiment experiment experiment
experiment experiment experiment experiment experiment experiment experiment experiment experiment
experiment experiment experiment experiment experiment experiment experiment experiment experiment
experiment experiment experiment experiment experiment experiment . . .

a word from the bag of words to appear. Formally, the normalization constant at time-step t is:
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oriented parallel to the (b,c) plane and are corner-linked to neighbouring squares along
the b-direction to form infinite chains. They are further corner-connected along the c-direc-
tion to the adjacent square-pyramids via common oxygen atoms. The square-pyramidal
units are corner-connected within the (a,b) plane and form sheets. According to localized
charge distribution considerations, the Cu atoms in the square-pyramidal coordination en-
vironments have oxidation state +2, while the square-planar coordinated Cu atoms are as-
sumed to have oxidation state +3. The conductivity in YBCO in its superconducting state is
anisotropic, being significantly higher within the (a,b) plane than along the c-direction.

A crucial parameter for the properties of YBa2Cu3O7-x is the oxygen content. With
further increase of the oxygen deficit, the transition temperature decreases. For x = 0
the Tc value is 92 K, which then decreases with increasing x to about 60 K for x = 0.25,
and at x > 0.5, superconductivity is no longer observed.

Subsequently, after the discovery of the superconducting properties of YBCO,
more oxocuprates with increasingly complicated compositions and higher transition
temperatures were synthesized. The structures of these oxocuprates can be viewed as
sequences of layers of MO or M and CuO2. The highest transition temperatures so far
were found in the systems, Bi-Sr-Ca-Cu-O (Tc ≈ 110 K), Tl-(Ba,Sr)-Ca-Cu-O (Tc ≈ 125 K),
and Hg-Ba-Ca-Cu-O (Tc ≈ 133 K, under pressure: Tc ≈ 160 K). The structures of two rep-
resentatives in the homologous series Tl2Ba2CanCun +1O2n +6 for n = 0 and 1 are shown
in Figure 11.7 (right), which are also referred to simply as 2201- and 2212-TBCCO ac-
cording to their compositions.

Figure 11.6: The crystal structure (tetragonal
space group I4=mmm, a = b = 3.8008 Å, c =
13.3608 Å) of La1.85Ba0.15CuO4; La and Ba, which
share the same site, are shown in pink, Cu in blue,
and oxygen atoms in red.
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11.2.4 Further superconducting compounds

Chevrel phases
In the 1970s, an interesting class of compounds with unusual magnetic and electric
properties was discovered by Chevrel et al. [77]. These compounds are since then
known as Chevrel phases and are ternary molybdenum chalcogenides with the gen-
eral formula MMo6Xy (y = 6–8), where M may be one of a variety of metals (Sn, Pb,
Ba, Ag, Cu, La, RE, etc.) and X = S, Se, or Te. Some examples of substitution of Mo by Rh
or Ru are also known. The best known Chevrel phase is PbMo6S8. It is superconduct-
ing below the relatively high critical temperature of Tc = 15 K. At the time of their dis-
covery, i.e., well before the oxocuprate revolution occurred, they were even called
‘high-temperature’ superconductors. But the really interesting aspect of the Chevrel
phases is something else: first, they can tolerate extremely high critical magnetic field
strengths, which amounts to 40 T for SnMo6S8, 45 T for LaMo6S8, and 60 T for PbMo6S8,
and second, Chevrel phases with M = RE were the first class of compounds in which
the coexistence of superconductivity and magnetism was demonstrated. Usually, the

Figure 11.7: The crystal structure of YBa2Cu3O7 in relation to the perovskite structure type (left) and the
‘2201ʹ and ‘2212ʹ oxocuprates of the system Tl-(Ba,Sr)-Ca-Cu-O (right); the coordination polyhedron of the
Ba atom in YBCO is shown separately; A- and B-sites in perovskite are shown in blue and green,
respectively, oxygen in red. In the YBCO structure, the two crystallographically distinct Cu sites are shown
in blue (square-planar coordination) and orange (square-pyramidal coordination), respectively, the Y
atoms in pink. In the Tl-Ba-Ca-Cu-O system, Tl is shown in pink and Ca in green-blue.
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oriented parallel to the (b,c) plane and are corner-linked to neighbouring squares along
the b-direction to form infinite chains. They are further corner-connected along the c-direc-
tion to the adjacent square-pyramids via common oxygen atoms. The square-pyramidal
units are corner-connected within the (a,b) plane and form sheets. According to localized
charge distribution considerations, the Cu atoms in the square-pyramidal coordination en-
vironments have oxidation state +2, while the square-planar coordinated Cu atoms are as-
sumed to have oxidation state +3. The conductivity in YBCO in its superconducting state is
anisotropic, being significantly higher within the (a,b) plane than along the c-direction.

A crucial parameter for the properties of YBa2Cu3O7-x is the oxygen content. With
further increase of the oxygen deficit, the transition temperature decreases. For x = 0
the Tc value is 92 K, which then decreases with increasing x to about 60 K for x = 0.25,
and at x > 0.5, superconductivity is no longer observed.

Subsequently, after the discovery of the superconducting properties of YBCO,
more oxocuprates with increasingly complicated compositions and higher transition
temperatures were synthesized. The structures of these oxocuprates can be viewed as
sequences of layers of MO or M and CuO2. The highest transition temperatures so far
were found in the systems, Bi-Sr-Ca-Cu-O (Tc ≈ 110 K), Tl-(Ba,Sr)-Ca-Cu-O (Tc ≈ 125 K),
and Hg-Ba-Ca-Cu-O (Tc ≈ 133 K, under pressure: Tc ≈ 160 K). The structures of two rep-
resentatives in the homologous series Tl2Ba2CanCun +1O2n +6 for n = 0 and 1 are shown
in Figure 11.7 (right), which are also referred to simply as 2201- and 2212-TBCCO ac-
cording to their compositions.

Figure 11.6: The crystal structure (tetragonal
space group I4=mmm, a = b = 3.8008 Å, c =
13.3608 Å) of La1.85Ba0.15CuO4; La and Ba, which
share the same site, are shown in pink, Cu in blue,
and oxygen atoms in red.
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11.2.4 Further superconducting compounds

Chevrel phases
In the 1970s, an interesting class of compounds with unusual magnetic and electric
properties was discovered by Chevrel et al. [77]. These compounds are since then
known as Chevrel phases and are ternary molybdenum chalcogenides with the gen-
eral formula MMo6Xy (y = 6–8), where M may be one of a variety of metals (Sn, Pb,
Ba, Ag, Cu, La, RE, etc.) and X = S, Se, or Te. Some examples of substitution of Mo by Rh
or Ru are also known. The best known Chevrel phase is PbMo6S8. It is superconduct-
ing below the relatively high critical temperature of Tc = 15 K. At the time of their dis-
covery, i.e., well before the oxocuprate revolution occurred, they were even called
‘high-temperature’ superconductors. But the really interesting aspect of the Chevrel
phases is something else: first, they can tolerate extremely high critical magnetic field
strengths, which amounts to 40 T for SnMo6S8, 45 T for LaMo6S8, and 60 T for PbMo6S8,
and second, Chevrel phases with M = RE were the first class of compounds in which
the coexistence of superconductivity and magnetism was demonstrated. Usually, the

Figure 11.7: The crystal structure of YBa2Cu3O7 in relation to the perovskite structure type (left) and the
‘2201ʹ and ‘2212ʹ oxocuprates of the system Tl-(Ba,Sr)-Ca-Cu-O (right); the coordination polyhedron of the
Ba atom in YBCO is shown separately; A- and B-sites in perovskite are shown in blue and green,
respectively, oxygen in red. In the YBCO structure, the two crystallographically distinct Cu sites are shown
in blue (square-planar coordination) and orange (square-pyramidal coordination), respectively, the Y
atoms in pink. In the Tl-Ba-Ca-Cu-O system, Tl is shown in pink and Ca in green-blue.
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Nature tries to minimize free energy

F = E − TS
energy entropy 

 is a cost function given by NatureF
The *same* cost function for training deep generative models, almost



Gibbs–Bogolyubov-Feynman-Delbrück–Molière

F[ρ] = Tr(Hρ) + kBT Tr(ρ ln ρ)min

Difficulties in Applying the Variational 
Principle to Quantum Field Theories1 

Richard P. Feynman 

California Institute of Technology 
Pasadena, California 91125, U.S.A. 

Introduction 
I'd like to talk on some work I did on the variational principle in field theory. At one 
time I thought that the brute force method of doing arithmetic on the machines will 
never get anywhere and we will probably end with something more old-fashioned, 
i.e. some analysis plus the machines to help us with the analytic equations, and 
so I tried to do something along these lines with quantum chromodynamics. So 
I'm talking on the subject of the application of the variational principle to field 
theoretic problems, but in particular to quantum chromodynamics. 

I'm going to give away what I want to say, which is that I didn't get anywhere! 
I got very discouraged and I think I can see why the variational principle is not 
very useful. So I want to take, for the sake of argument, a very strong view -
which is stronger than I really believe - and argue that it is no damn good at all! 

Let us review why the variational principle has gotten a good reputation. Let's 
say you apply it to something like atoms or to simple problems with a small number 
of variables, using the usual analytic methods to get a quantity called the total 
energy, a quantity which is of direct physical significance. The energy levels of 
atoms are very interesting, measurable quantities and they can be calculated with 
accuracy. It was noted that if one had a wave function which had some measure 
of error, say 10 percent, then the error in the energy would be of order 1 percent. 
The error in the energy is quadratic in the error in the wave function. So, by not 
having a perfect wave function, you can still get very good values for the energy 
and that's why the variational method has gotten a good reputation. But it has 
never been a powerful way of getting, with accuracy, the wave function itself. 

Now I want to turn to the other side, the application of the variational principle 
to quantum field theory in a more or less straightforward way. So you write down 
a Hamiltonian in some kind of scheme and then you try to find a wave functional 

1 Transcript of Professor Feynman's talk, taken by the Editors and corrected by the author 
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ρ ?

The variational free energy principle

≥ F

energy variational density matrix  entropy 

Generative  
models !

"



Quantum relative entropy

S (ρ | |σ)

Density matrixProbability density

Kullback-Leibler divergence

𝕂𝕃 (p | |q)

Neural canonical transformations

S (ρ | |
e−βH

Z )

classical world  quantum world

ρp

Unitary transformationSymplectic transformation

Li, Dong, Zhang, LW, PRX ’20 Xie, Zhang, LW, JML ’21 



Classical probability  pn Quantum states |ψn⟩ = U |ϕn⟩

flowautoregressive model

ρ = ∑
n

pn |ψn⟩⟨ψn |

Z

X

N (Z)

p
(X

)“… the murderer is ___”
p(_ | . . . )

2105.08644, JML ’22 
2201.03156, SciPost Physics’23

1809.10606, PRL ‘19

Neural canonical transformation for 
variational density matrix



ρ = ∑
K

p(K) ΨK⟩⟨ΨK

Normalized probability 
distribution 

Orthonormal  
many-electron basis

∑
K

p(K) = 1 ⟨ΨK |ΨK′ 
⟩ = δK,K′ 

There will also be interesting twists for physics considerations

Example: the variational density matrix of electron gas

Fermi 
sea

Low-energy excited 
states are labeled in 
the same way as the 

ideal Fermi gas
K = {k1, k2, …, kN}

Xie, Zhang, LW, SciPost Physics ’23



Variational autoregressive network for p(K)

p(K) = p(k1)p(k2 |k1)p(k3 |k1, k2)⋯

Pauli exclusion: we are modeling a set of words with no repetitions and no order
We use masked casual self-attention Vaswani et al 1706.03762; Alternative solution: Hibat-Allah et al, 2002.02793, Barrett et al, 2109.12606

N # of fermions # of words

M Momentum 
cutoff Vocabulary

Fermionic 
occupation 
in k-space

quick
brown fox

jumps

 probability space(M
N )
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Z

Electron  
coordinates

Quasi-particle  
coordinates

: unitary backflow between particle and quasiparticle coordinates  X ↔ Z

ΨK(X) = det(eiki⋅zj)
N!

⋅ det ( ∂Z
∂X )

1
2

Orthonormal many-body states

flow for |ΨK⟩

Fermion statistics: permutation equivariant flow We use FermiNet layer Pfau et al, 1909.02487 

Xie, Zhang, LW, SciPost ’23 
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zi = xi+∑
j≠i

η( |xi − xj | ) (xj − xi)
Feynman & Cohen 1956 

wavefunction for liquid Helium

Feynman’s backflow in the deep learning era

E Commun. Math. Stat 17’,  Harbor el al 1705.03341, Lu et al 1710.10121, Chen et al, 1806.07366Taddei et al,  PRB ‘15
Iterative backflow  deep residual network  continuous normalizing flow→ →
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Jointly optimize  and   to minimize the variational free energy pn ψn(R)

F = 𝔼
n∼pn [kBT ln pn + 𝔼

R∼|ψn(R)|2 [ Hψn(R)
ψn(R) ]]

Boltzmann 
distribution

Born  
probability 

ρ = ∑
n

pn |ψn⟩⟨ψn |

The objective function of variational density matrix 



The deep variational free energy approach

Low-temperature properties of interacting electrons 
(~50 electrons) 

Vibrational spectra of molecules and solids 
(~500 atoms) 

A computational framework taking in account of electron correlation, thermal 
effect, and anharmonic lattices for free energy, entropy, and excitation spectra

Fermi  
sea

ρ = ∑
n

U |ϕn⟩pn⟨ϕn |U†

1912.11381, MLST’ 21 
2105.08644, JML ’22

1910.00024, PRX ’20 
2209.06095, PRL ‘23 

2201.03156, SciPost ’23 
2403.12518, JCP ’24…

1802.02840, PRL ’18  
1809.10606, PRL ‘19 



Deep variational free energy approach: resolving puzzles
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Nobel Lecture7 are updated versions). In 1935, Eugene Wigner (one of
the founders of modern solid-state physics) and his colleague Hillard
Huntington first tried to predict what would happened to hydrogen if it
were compressed to very high densities.8 Based on a nearly free-electron
picture, they predicted that above 250 000 atm (25 GPa)—an un-
imaginable pressure at the time—hydrogen would enter ametallic state.
Because they did not know the compressibility of hydrogen, they were
quite far off in their estimate of the pressure required. Experimental
high-pressure physics has developedandmaturedover the eight decades
since, succeeding in subjecting hydrogen to pressures of the order of 400
GPa,9 an almost 16-fold increase compared with the original prediction
of Wigner and Huntington. A plethora of exciting and interesting
phenomenahavebeenobserved indensehydrogen, but themetallic state
remains elusive. Owing to the accumulated experience, knowledge, and
significantly improved experimental and theoretical methods, we now
understand the problems much better and can make an educated guess
as to the P–T conditions needed to turn the molecular gas into the
lightest metal. While the experimentalists are tantalizingly close to the
pressures needed to metallize hydrogen, theory has already moved
beyondcurrent static pressure limits andhas predicted that ground-state
(T ! 0 K) hydrogen, owing to strong quantum effects, would be an
entirely new state of matter, which could be superfluid or super-
conducting, depending on the magnetic field applied.16 This fascinating
prospect is so unusual that it is quite difficult to imagine it being possible.
Consequently, metallizing hydrogen and reaching such a novel state of
matter is arguably the most exciting and interesting discovery that
condensed matter physics could produce today.

II. PHYSICS OF DENSE HYDROGEN AND DEUTERIUM
AT HIGH DENSITIES (COMPRESSION)

The behavior of hydrogen is strongly influenced by quantum
mechanical effects. Nuclear quantum effects are larger for hydrogen

than any other atom, which explains its unique behavior. Solid hy-
drogen has a massive quantum zero-point energy (ZPE), far greater
than its latent heat of melting, and has a Debye temperature well above
melting. These factors determine the behavior of hydrogen in the dense
state. Currently, five solid phases of hydrogen are known (see Fig. 1),
and it is unique among the stable elements in that full structural in-
formation (e.g., the locations of the atomic centers and the shapes of the
molecules) is absent for all of them, which prevents modeling and/or
predictions of hydrogen behavior at higher pressures.

Under ambient conditions, i.e., atmospheric pressure and
300 K, hydrogen is a molecular gas [see Fig. 2(a)]. The exchange
interaction, a purely quantum mechanical effect, forms one of the
strongest bonds in chemistry, the H–H bond. Owing to this bond,
hydrogen exists in molecular form, with atoms separated by ap-
proximately 0.74 Å and a bond dissociation energy of approximately
4.52 eV under ambient conditions.17,18 In its solid state at 2 K, the
hydrogen bandgap is very large, at about 14 eV.19 Conversely, in-
termolecular bonding is very weak, requiring extreme conditions to
bring the molecules together and bind them into the solid state. Low-
temperature solidification of hydrogen was first achieved in 1899 by
Dewar, at a slightly higher temperature (19 K) than that required to
liquefy helium. An alternative solidification route is through com-
pression, whereby hydrogen can be solidified at 300 K by bringing the
molecules close to each other and increasing the density. The gaseous,
diffusive, and corrosive nature of hydrogen, combinedwith the lack of
high-pressure technology, delayed room temperature solidification
for almost a century after Dewar’s experiments. Only the invention
and refinement of the diamond anvil cell allowed Mao and Bell20 to
solidify hydrogen at 300 K using a pressure of 5.5 GPa (55 000 atm).
The solid state under these conditions is now known as phase I
(Fig. 1). This phase is characterized by quantum spherically disor-
deredmolecules arranged in a hexagonal close packed (hcp) structure
[Fig. 2(b)]. At room temperature and above 5.5 GPa, hydrogen is a
very good (molecular) insulator with a bandgap of 9.5 eV (H.-K.Mao,
unpublished work). Phase I occupies a very prominent part of the
phase diagram, reaching up to 190 GPa at 300 K. It displays re-
markable pressure stability and to our knowledge extends over the
second largest pressure range for any molecular system, being second
only to molecular chlorine, whose phase I exists over a pressure
interval of 230 GPa.21 Phase II, known as the “broken symmetry”
phase,23 is formed by compressing phase I of hydrogen or deuterium
above 60 GPa or 25 GPa, respectively,13 and at temperatures below
∼100 K. Governed by quantum effects, phase II is thought to have
ordered (or at least partially ordered) molecules, but the nature of
their arrangement and their shape are unknown.24 There is a strong
isotope dependence in the transition from phase I to II, with the
deuterium transition occurring at substantially lower pressures than
that in hydrogen, implying a critical role of nuclear quantum effects.
Phase III is obtained by compressing phase II above ∼155 GPa below
100 K25 or at around 190 GPa at 300 K10,11 (see Fig. 1). Nothing so far
is known about its structure (atomic positions), but it has been shown
to also have an hcp lattice,26,27 with unusually intense infrared ac-
tivity.28 It has very recently been shown that phase III extends over a
pressure interval of more than 200 GPa at low temperatures.22 The
phase diagrams of hydrogen and deuterium were studied in great
detail in the 1990s, leading to many interesting discoveries: for ex-
ample, both isotopes have a triple point, i.e., a P–T point at which the

FIG. 1. Proposed (artistic) P–T phase diagram of H2. Solid phase lines are a
combination of static compression studies of solid hydrogen9–13 and dynamic
compression studies of fluid deuterium.14,15 Dashed lines represent extrapolations
of these combined results. The dark brown color of phases III and V at higher
pressures suggests closing of the bandgap.
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Deep variational free energy approach: making discoveries
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Our calculation does NOT reproduce the 
experimentally observed Oc88 phase of 
Lithium, which contradicts consensus

Qi Zhang et al, 2412.12451 

Thermal effect  
Quantum anharmonicity 
DFT functional error for bad metal

PBE  HSE→
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Deep variational free energy approach: clarifying mechanism
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F[ρ] = E − TS

Matter inverse design

Nature’s cost function

Exploiting intuitions in data

Variational free energy is finally practical

p(X |y) ∝ p(X)p(y |X)

Turning physics problems into stochastic optimization 
Leverages the deep learning engine

Generative AI for It



The Universe as a generative model

Thank you!
Discovering physical laws: learning the action

Solving physical problems: optimizing the action
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 Machine learning for physicists 
https://github.com/wangleiphy/ml4p 
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